Analysis For Properties Of Utilizing Waste Glass For Eco-Friendly Ultra-High Performance Concrete For Sustainable Structures

¹Devendra Kumar Sharma, ²Dr. Imran Ahamad ¹Research scholar, Department of Civil Engineering, Amity university Madhya predesh ²Assistant Professor, Department of Civil Engineering, Amity University Madhya Pradesh

Abstract:-

Researchers have shown that many recycled materials can be used as partial replacement in concrete mixture in Ultra high performance concrete to result in ecofriendly and more sustainable structural material. Ultra-high performance glass concrete is latest UHPC for making sustainable concrete structures. Waste glass industry awards many harmful impacts to Environment. The utilization of waste glass in UHPC enhances Environmental Benefits. This paper present effects on fresh and mechanical properties of UHPC by crushed waste glass. With the addition of waste glass, the latest material ecofriendly ultra-high performance glass concrete which improving properties of fresh concrete and mechanical properties. Use of glass powder reduced amount of cement.

Key words:- UHPC, UHPGC, EFUHPC, Glass powder, Waste glass

Introduction:-

At present time latest concrete like high performance concrete (HPC), high strength concrete (HSC), ultra high performance concrete (UHPC), Eco-friendly ultra-high performance concrete (EFUHPC) have been developed for enhancing properties of concrete. Solid waste materials and recycled waste materials utilization increased in concrete production at present time which addresses environmental or ecological issues and save energy [1,2,3,5,9,11]. Many solid wastes like silica fume [1], fly ash [5], sugarcane bagasse ash [7], rice barn husk ash [7], marble waste [6,7], plastic waste [14,15], metakaoline [10], stone waste [16], building waste [4,5] and rock waste [11-13] were used as alternatives in concrete for their improvement or development features [3,6,17,18]. The Properties of concrete depends on W/C ratio, distribution of particle size and density [05]. UHPC more costly as compare to traditional concrete so for reducing cost prepared ecofriendly UHPC [32,33]. The UHPC possesses limited long term creep, elastic modulus up to 45000MPa, compressive strength up to 0.15GPa and flexural resistance up to 0.015GPa [2,3]. Many researchers indicate the significance of producing UHPC by using waste glass and this work have positive results on the environmental with enhancing properties of concrete [12-13].

From last many years, the WG has progressively enhanced due to the expanded of glass products. Waste glass poses a significant environmental challenge today, and is often recycled or used in landfills. Waste glass is also used in concrete, making it eco-friendly and enhancing its properties. WG material used in concrete in to form of small particle sizes an alternative of cement and ultra-fine filler which considered creative and sustainable [6,19]. According to previous study the range of particle size of glass material is 0.0075 mm - 2.00 mm and 0.0075 mm size for expansions in concrete not harmful [20]. Finer than 75 μ m donate the strength and durability of concrete and observed pozzolanic nature [10-12].

The chemical composition of glass mostly resolute by waste supplies and bulk of soda- lime glass is formed up of more than $\geq 70\%$ structure less SiO₂, \geq grater then 12% Na₂O & greater than $\geq 5\%$ of CaO [3,4].

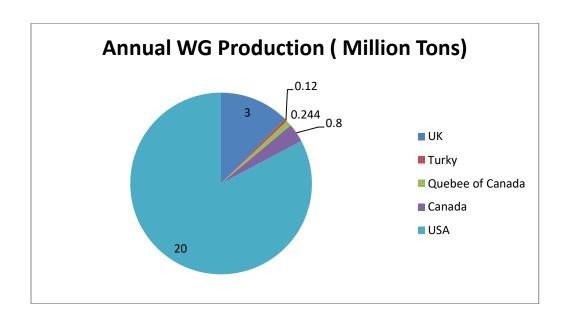


Figure 01: Annual WG production

Aim of study:-

In the above study showed many advantages of recycled of waste glass which impact on the environment and in this work studied about properties and sources of glass. In past studies many researchers showed performance of UHPC with use of waste glass replacement of cement or aggregates as ecofriendly replacement.

This work showed that use of WG influenced the aggregate content, size, finer filling materials, properties of fresh concrete and hardened concrete. This review is showed the previous work of the UHPGC at fresh and hardened both state of concrete.

Chemical Composition for Waste glass Powders

In previous studies many researchers found different chemical compositions. The chemical compositions of WG powder also affect the properties of UHPC. Some chemical compositions are given in table 01

Table 01: Chemical Composition

WGP	SiO ₂	Al ₂ O ₃	CaO	Fe ₂ O ₃	MgO	Na ₂ O	K ₂ O	SO ₃	TiO ₃
CG[10,11,12]	72.42%	1.44%	11.5%	0.07%	0.32%	13.64%	0.35%	0.21%	0.035%
BG[10,12]	72.21%	1.37%	11.57%	0.26%	0.46%	13.75%	0.2%	0.1%	0.041%
GG[10,13,14]	72.38%	1.49%	11.26%	0.29%	0.54%	13.52%	0.27%	0.07%	0.04%
Cr. G[10,15,16]	72.61%	1.38%	11.7%	0.48%	0.56%	13.12%	0.38%	0.09%	
GP[10,17]	72.2%	1.54%	11.42%	0.48%	0.79%	12.85%	0.43%	0.09%	

Effect of WG on Fresh Properties of UHPC:-Workability:-

Workability of concrete is important property of UHPC. The utilization of WG powder affect the workability of UHPC. The use of soda lime glass waste decreases the workability of UHPC and lime glass and glass sand increases the flow value of UHPC according to previous research given in table 02.

Table 02: Workability of UHPC with WG

Ref	Replacement	Glass Source	Effect
19	20%, 30%	Soda lime Glass	Decreasing Slump value
20	0%-30%	Lime Glass	Increasing Flow value
8	50%	Glass sand	Increase flow value

Air Content:-

By using more W/B and SP ratio, the air content of the EFUHPC mix will enhances. The used mixture process has valuable effect on overall air content [28]. According to 61etal air content in mixers with a higher blending speed in UHPC declared from 3to 5.4%. Similarly Amin et al measured, ring type mixture and decleared around 3.2 and 74 et al by vaccume accessary decleared less than 1% amount of air content.

Effect of WG on UHPC mechanical Properties

Compressive Strength:-

The compressive strength of UHPC with waste glass many factors like size, shape and content affected. Mosaberpanah et all replace 20% sand with waste glass and found upto 144Mpa compressive strength. Similarly Tahiwa et all found optimum result at 10% amount of WG and compressive strength 211Mpa. Amin et all attain 176.3Mpa compressive strength at 20% replacement of sand with WG and data shown in figure 02. According to all previous work 10 to 20% replacement of sand with WG enhance the compressive strength of UHPC and suitable for EFUHPC mix.

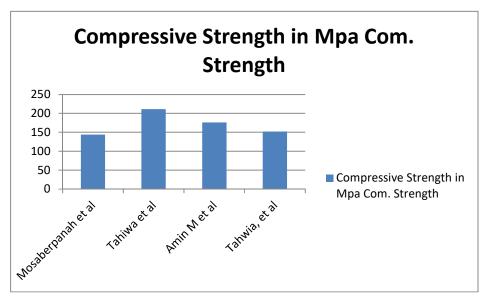


Figure 02: Compressive Strength

Flexural Strength:-

The flexural strength of UHPC with waste glass affected by many factors like, content, shape and size. According previous work Tahiwa et all gain 29.2 Mpa flexural strength at 10 % sand replacement with WG. Similarly Amin el all attain 25.7 Mpa at when WG used 20%. Similarly S. Chu et al and M a m Mohammad et al found at 17.1Mpa at 10%, and 27.88 Mpa at 20% amount of sand replaced with WG Al data shown in figure 03

According to all previous work analysis 10 to 20% amount of WG enhances the optimum flexural strength of UHPC and suitable for EFUHPC.

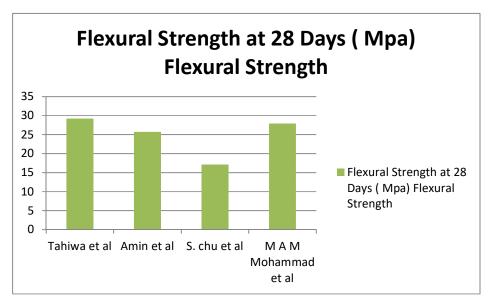


Figure 03: Flexural Strength

Splitting Tensile Strength:-

Splitting tensile strength is most usable property of UHPC. Utilization of waste glass enhances splitting tensile strength of UHPC. Amin et all found 18Mpa splitting tensile strength at 20% sand replacement with WG. 20% amount WG in UHPC mix suitable for enhancing splitting tensile strength and usable for EFUHPC making.

Water Absorption:-

Water absorption testing is most significant properties of UHPC which affet the properties of UHPC. The water absorption coefficient after use of WG as compare to ordinary concrete enhances up to five time [30]. The glass particle range lie between 25 to 75 μ m and silica fume also useful for water absorption properties of UHPC[27,28]

Conclusions:-

The use of glass waste powder in UHPC affect the properties of UHPC and present time most suitable material for UHPC mix which enhances the properties of UHPC and making Eco-friendly UHPC mix.

10 to 20% replacement of sand with WG enhance the compressive strength of UHPC and suitable for EFUHPC mix.

10 to 20% amount of WG enhances the optimum flexural strength of UHPC and suitable for EFUHPC.

The Use of Waste Glass powder decreases the use of cement in UHPC mix.

Use of waste glass powder reduce cost and make sustainable structures.

References:

- 1. M. Amin, A.M. Zeyad, B.A. Tayeh, I.S. Agwa, Engineering properties of self-cured normal and high strength concrete produced using polyethylene glycol and porous ceramic waste as coarse aggregate, Constr. Build. Mater. 299 (2021), 124243.
- 2. G. Calis, S.A. Yildizel, S. Erzin, B.A. Tayeh, Evaluation and optimisation of foam concrete containing ground calcium carbonate and glass fibre (experimental and modelling study), Case Stud. Constr. Mater. 15 (2021), e00625.
- B.A. Tayeh, D.M. Al Saffar, R. Alyousef, The utilization of recycled aggregate in high performance concrete: a review, J. Mater. Res. Technol. 9 (2020) 8469–8481.
- 4. M.T. Marvila, J. Alexandre, A.R. de Azevedo, E.B. Zanelato, Evaluation of the use of marble waste in hydrated lime cement mortar based, J. Mater. Cycles Waste Manag. 21 (2019) 1250–1261.
- 5. A.R. de Azevedo, M.T. Marvila, B.A. Tayeh, D. Cecchin, A.C. Pereira, S.N. Monteiro, Technological performance of açaí natural fibre reinforced cement-based mortars, J. Build. Eng. 33 (2021), 101675.
- 6. I. Almeshal, B.A. Tayeh, R. Alyousef, H. Alabduljabbar, A.M. Mohamed, Eco-friendly concrete containing recycled plastic as partial replacement for sand, J. Mater. Res. Technol. 9 (2020) 4631–4643.
- 7. R. Madandoust, R. Ghavidel, Mechanical properties of concrete containing waste glass powder and rice husk ash, Biosyst. Eng. 116 (2013) 113–119.
- 8. N.A. Soliman, A. Tagnit-Hamou, Using glass sand as an alternative for quartz sand in UHPC, Constr. Build. Mater. 145 (2017) 243–252.
- 9. A. Omran, N. Soliman, A. Zidol, A. Tagnit-Hamou, Performance of ground-glass pozzolan as a cementitious material—a review, Adv. Civ. Eng. Mater. 7 (2018) 237–270.
- 10. M. Sonebi, Y. Ammar, P. Diederich, Sustainability of cement, concrete and cement replacement materials in construction, in: Sustainability of Construction Materials, Elsevier, 2016, pp. 371–396.
- S. Liu, G. Xie, S. Wang, Effect of curing temperature on hydration properties of waste glass powder in cement-based materials,
 J. Therm. Anal. Calorim. 119 (2015) 47–55.
- 12. A.M. Matos, J. Sousa-Coutinho, Durability of mortar using waste glass powder as cement replacement, Constr. Build. Mater. 36 (2012) 205–215.
- 13. V. Shevchenko, ASR effect in glasses used as additives to Portland cement, Glass Phys. Chem. 38 (2012) 466–471. [38] "O. "Ozkan, I. Yüksel, Studies on mortars containing waste bottle glass and industrial by-products, Constr. Build. Mater. 22 (2008) 1288–1298.

- G.S. Islam, M. Rahman, N. Kazi, Waste glass powder as partial replacement of cement for sustainable concrete practice, Int. J. Sustain. Built Environ. 6 (2017) 37–44.
- 15. C.M. Yun, M.R. Rahman, K.K. Kuok, A.P.S. Chai, A.B.S. Ding, M.K.B. Bakri, Glass waste as coarse aggregate filler replacement in concrete, in: Waste Materials in Advanced Sustainable Concrete, Springer, 2022, pp. 25–44.
- P. Kara, A. Borosny'oi, O. Fenyvesi, Performance of waste glass powder (WGP) supplementary cementitious material (SCm): drying shrinkage and early age shrinkage cracking, Epos Equipment Uk Msi Database/European Parliament [Brussels]-Luxembourg. 66 (2014) 18–22.
- 17. B. Patnaik, T. Bezabih, M. Gabrie, Structural Performance and Characteristics of Concrete with Crushed Glass as Partial Replacement of Sand, in: Recent Developments in Sustainable Infrastructure (ICRDSI-2020)—Structure and Construction Management, Springer, 2022, pp. 427–436.
- 18. S. Li, J. Zhang, G. Du, Z. Mao, Q. Ma, Z. Luo, Y. Miao, Y. Duan, Properties of concrete with waste glass after exposure to elevated temperatures, J. Build. Eng. 57 (2022), 104822.
- 19. A. Shayan, A. Xu, Performance of glass powder as a pozzolanic material in concrete: a field trial on concrete slabs, Cem. Concr. Res. 36 (2006) 457–468.
- J. Lu, Z. Duan, C.S. Poon, Combined use of waste glass powder and cullet in architectural mortar, Cem. Concr. Compos. 82 (2017) 34–44.
- 21. N. Schwarz, N. Neithalath, Influence of a fine glass powder on cement hydration: comparison to fly ash and modeling the degree of hydration, Cem. Concr. Res. 38 (2008) 429–436.
- 22. R. Aghayari, A. Et, An experimental investigation of mechanical properties of the ultra-high performance fiber reinforced concrete (UHPFRC), Civ. Environ. Res. 11 (12) (2019) 1–10.
- 23. S. Mishra, Reviewing some properties of ultra high performance concrete, Int. J. Eng. Res. V9 (06) (2020) 108–121, https://doi.org/10.17577/ijertv9is060156.
- 24. N.A. Soliman, A.F. Omran, A. Tagnit-Hamou, Laboratory characterization and f ield application of novel ultra-high-performance glass concrete, ACI Mater. J. 113 (3) (2016) 307–316, https://doi.org/10.14359/51688827.
- 25. I. M. Metwally and M. Ghannam, Behaviour of green ultra-high-performance concrete beams with corrosion resistant alloy steel (MMFX) bars, SN Appl. Sci., vol. 2, no. 5, 2020, doi: 10.1007/s42452-020-2632-4.
- 26. A. Zidol, M.T. Tognonvi, A. Tagnit-Hamou, Effect of glass powder on concrete sustainability, New J. Glas. Ceram. 07 (02) (2017) 34–47, https://doi.org/10.4236/njgc.2017.72004.
- A. Tagnit-Hamou, N. A. Soliman, A. F. Omran, M. Mousa, N. Gauvreau, and F. Provencher, Novel Ultra-High- Performance Glass, no. March, 2015.
- 28. H. Du, K.H. Tan, Waste glass powder as cement replacement in concrete, J. Adv. Concr. Technol. 12 (11) (2014) 468–477, https://doi.org/10.3151/jact.12.468.
- K. L. Okeke and A. A. Adedeji, A Review on the Properties of Concrete incorporated with Waste Glass as a Substitute for Cement, no. January 2015, 2016.
- 30. Mosaberpanah, M. A., Eren, O., & Tarassoly, A. R. (2019). The effect of nano-silica and waste glass powder on mechanical, rheological, and shrinkage properties of UHPC using response surface methodology. Journal of Materials Research and Technology, 8(1), 804-811. https://doi.org/10.1016/j.jmrt.2018.06.011
- 31. Tahwia, A. M., Essam, A., Tayeh, B. A., & Abd Elrahman, M. (2022). Enhancing sustainability of ultra-high performance concrete utilizing high-volume waste glass powder. Case Studies in Construction Materials, 17, e01648. https://doi.org/10.1016/j.cscm.2022.e01648
- 32. Amin, M., Agwa, I. S., Mashaan, N., Mahmood, S., & Abd-Elrahman, M. H. (2023). Investigation of the physical mechanical

- properties and durability of sustainable ultra-high performance concrete with recycled waste glass. Sustainability, 15(4), 3085. https://doi.org/10.3390/su15043085
- 33. Tahwia, A. M., Heniegal, A. M., Abdellatief, M., Tayeh, B. A., & Abd Elrahman, M. (2022). Properties of ultra-high performance geopolymer concrete incorporating recycled waste glass. Case Studies in Construction Materials, 17, e01393. https://doi.org/10.1016/j.cscm.2022.e01393