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Abstract :

The revive (repair) and sustainance aspects of a two-unit cold standby system are examined
in this model. The idea of a rest period is taken into account, meaning that if the repairman
has to take a break before finishing the unit that has failed, another repairman may be brought
in to continue the work. While the distribution for repair, rest, and patience durations is
assumed to be arbitrary with various probability density functions, the failure time follows an
exponential distribution. Semi-Markov processes are used to calculate a number of
dependability metrics, including mean time to system failure (MTSF), steady-state

availability, busy period, and projected number of server visits.

keywords: Failed unit, repaired unit, repairman, patience time, MTSF, Availability.

1. Introduction

Due to the growing need in the modern business, a great deal of effort has been done on
different kinds of one- or two-unit redundant systems. The employment of extra parts in
addition to the primary unit to increase system dependability is referred to as "redundant

components.” These spare parts are stored so they may be utilized in the event that the
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primary unit malfunctions. Standby units come in two varieties: heated standby units and cold
standby units.

Warm standby units have the potential to fail while waiting in the standby state, whereas cold
standby units cannot fail while they are waiting. The ideas of redundant systems, including
repair time, operation and rest time, availability, busy period, and failures owing to various
types of mistake, have been the subject of several studies.

S.K. Barak, M.S. Barak, and S.C. Malik (2016) investigated a two-unit cold standby system
using preventive maintenance and repair. The possibility of repairing the failed unit is
evaluated following inspection. They graphed the trend for various reliability metrics
computed using the semi-Markov process and the regenerating point approach for arbitrary

parameter and cost values.

Renu and P. Bhatia (2019) studied two high-pressure die casting machines where the
secondary units functioned for the maximum permissible time, with two maintenance

facilities. Various dependability metrics were investigated in every potential circumstan

C. Aggarwal and S.C. Malik (2020) considered a repairable standby system that could
continue to operate while the server was being fixed. They conducted a thorough examination
of a cold standby repairable system consisting of two identical units, taking into consideration
the stochastic idea of server rest intervals between repairs. The expressions for Mean Time to
System Failure (MTSF), availability, server busy period due to repair, projected number of
repairs, and profit function were calculated using the semi-Markov process and regenerating
point approach. The profit of the system model was calculated using changes in income per

unit time, server downtime expenses, and repair expenditures per unit time.

C. Aggarwal, N. Ahlawat, and S.C. Malik (2021) studied the profitability of a cold standby
system in which preventative maintenance was prioritized above repair. They studied one
server that was permitted to rest after each repair but not after preventative maintenance.To
conduct the profit analysis, the revenue per unit uptime and cost functions associated with

repair activities were considered

In this research, we examined a two-unit cold standby system from the perspectives of revival
and sustainability. We define revive as fixing the failing unit, and the same repairing facility

is regarded. There may be times when the repairman has to rest before fixing the failing
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device, or the repair may be completed without rest. If the failing unit is left unattended

during the repairman's rest interval, another repairman takes up the repair.

2. Description of model and Assumptions:

I.The system consists of two identical units. One unit is operational, and the other is
maintained on cold standby.

ii.If one unit fails, the backup unit will take over immediately, while the failing unit is
repaired.

iii.If both units fail, the system fails.

iv.After repair, the failed item will act as if it were new.
v.Each unit's time to failure follows an exponential distribution, but repair and patience times

follow an arbitrary distribution.

All random variables are mutually independent.

3. Nomenclature

a probability that the repairman does not need rest before repair is over
B probability that the repairman does need rest before repair is over

A constant failure rate of the operative unit

@) operative state of unit

CS unit is in cold standby

g(t) p.d.f. of repair time of unit

G(t) c.d.f. of repair time of unit
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r(t) p.d.f. of rest time of unit

R(t) c.d.f. of rest time of unit

p1(t) p.d.f. of patience time of unit

P, (t) c.d.f. of patience time of unit

Fur failed unit under the repair of repairman

Fer repair of the failed unit is continuing from the previous state

Fr repairman is at rest and failed unit is waiting for repair

Fir rest of the repairman is continuing from previous state while failed unit

is waiting for repair

Fur failed unit is waiting for repair
Fra failed unit under repair of another repairman who resumes repair
Far repair by another repairman is continuing from previous state
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4. Transition probabilities

The transition probabilities are:

dQo, (t) = Ae~Mdt

dQ.o(t) = ae M g(t)dt

dQ.,(t) = Be M g(t)dt

dQ,3(t) = e MG (D)dt

dQP (1) = (e ©p)g(t)dt = B(1 — e 2)g(t)dt
AP () = (e ©a)g(t)dt = a(l— e ) g(t)dt
dQ,,(t) = e Mr(t)P,()dt = e ME, (t)dt
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where E, () = r(t)P,(t)

dQ,,(t) = e Mp, (R()dt = e ME,(t)dt

where E,(t) = p, (©)R(t)

dQ,s(t) = 2e MR(t) P,(t) = e ME,(t)dt

where E;(t) = R(t) P,(t)

dQ () = (e #©1) r(®OP,(Ddt = (1 — e )E,(t)dt
dQS)(®) = (Ae ™ ©1) py(ORDdt = (1 — e M)E,(t)dt
dQqo(t) = e *g(t)dt

dQy; (t) = de™MG(t)dt

dQP(t) = (e ™©1)g(t)dt = (1 — e M)g(t)dt
dQgs(t) = r(OP,()dt = e ME, (t)dt

dQeo(t) = p1(DR()dt = e ME,(t)dt

dQs: () = ag(t)dt

dQge(t) = Bg(t)dt

dQo,(t) = g(t)dt (1-
19)

The non-zero elements p;; of transition state probabilities are as follows:
Por = 1.pio= ag* (), p1z = g, piz = 1— g W), piy = B(1 - g* W),
iy = a(1=g"D), P21 = E{(A), pos = B3 (D), pas = AE3(D), plg = E;(0) — E{(A),

psy = E3(0) = Ey(A), pao = 9' (D), pay = 1= gD, pY =1 - "), peg = E;(0),
Peo = E3(0),pg1 = @, pge = B ,Por = 1

By using above transition state probabilities, it can be verified that

Po1 = 1

Pio T P12z T P13 = P1o + P12 + Pf? + Pﬁ) =1

P21 + P2a + P25 = P21 + P2s + pgg) + Pég) =1

Pso T Pa7 = Pao T pﬂ) =1

Pes + Peo = Pg1 + Pg¢ = P =1 (20-
24)
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5. Mean Sojourn Time

If T denotes mean sojourn time in state O, then

1 1-g* (4 . 1-g* (A .
[P >0dt = 3 = =22 0y = B5() s = = =52 g = E5(0),

Ho

o = g = [, GDdt

The unconditional mean time taken by the system to transit to any regenerative state when
counting from the epoch of entry into that stage is, mathematically, expressed as

oo d .
my; = fo tdQ;;(t) = _;qiﬂs:o ......... (26)

Thus, my; = po, Mg + My + Myz = My + Myy; = Yy,
3 3
myo +mqy + mil) + m§6) = Mgy + Mgg = Mgy = Ug
My + My +Mys = [ te ™ M[E,(t) + Eo(6) + AE;(D)]dt = &

myq + Mmyy + Tng? + mg? = fooo te_lt [El (t) + EZ (t)]dt = Mgg + Megg = EZ ......... (27)

6. Mean time to system failure

Let us suppose the failed states as absorbing states. Also, by employing the arguments used

for regenerative processes, we will obtain the following relations from:

¢0(t) = Qo1 (t) @ ¢1(t)
$1(0) = Qu3(t) + Q10(t) @po(t) + Q12 (t) S, (t)
$2(t) = Qa5(8) + Q24 (1) G y(t) + Qo1 (1) @4 (1)

$.(0) = Qur (&) + Quo (V) @Ppo®) L (28-
31)

Taking the L.S.T. of the above equations (28-31) and solving for ¢5*(s), we will get

o (s) = Q31 ()IQE5 (){Q3E () +Q35()Qi% ()} +Q55 ()]
0 1-055 (9)[Q15 () +Q55 () Q35() Q4 ()] - 0313 ()Q31 (5)
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Now, the MTSF when the system starts from state O is

1-¢5'(s) _ N

To = él_rg(} s D

......... (33)

Where N = 'u,0+,u,1(1 + P12p24) + k2P12 ......... (34)
and D = p132(P24Da7 + P2s) + P12
......... (35)

7. Availability Analysis

M;(t) denotes the probability that the system starting in up regenerative state is up at time t

without passing through any regenerative state. Thus, we have

My@®) = e | M) =eM6c) , M) =eMEs(t) , M) =e M6

Using the arguments of the theory of regenerative processes, the availability A;(t) is seen to
satisfy

Ap(t) = My(t) + o1 (D) OA, (D)

A1) = My(6) + q1o (D) ©A () + q12 (D) ©A, (1) + ¢ () @4, (1) + 42 () ©A4(t)
A, (1) = My(t) + g1 () OAL (1) + Goa(D)©AL(E) + q53 (1) ©Ag (1) + ¢33 (D) @A (1)
A1) = My(t) + qao (D) ©A (D) + ¢ (D) @A (2)

Ag(t) = qes(t)©Ag(£) + oo () OA4(L)

Ag(t) = qg1(1)OAL(t) + qge () OA4(L)

Ay(t) = ¢ ()OA, 1) (37-
43)

Taking Laplace transform of equation (36) and taking lims — 0, we will get

Ms(0) = pq ) M;(0) = py ' M3(0) = p, ' M;(0) = py

The steady state availability of the system is given by
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4o = limsAy(s) =

......... (45)

Where Ny = (1 — pggPse) [Ho (P10 + P12P24Pa0) + 11 (1 + D12P24) + UoD1g e (46)

and D; = po(1 — pegbss) (P10 + P12P24Pa0) + (1 + p12D2a) (g + P12&] + & (pf? +
P12P§?P86) + Ug [P12 (ng) + p69p86) + Pi?l’es + Dg1 (P12P§g) + Pi?)]

......... (47)

8. Busy period analysis

Busy period of the repairman:

Bo(t) = qo1(t)O©B;(t)

B, (8) = Wy (8) + q10()@B, (1) + g1, (OB, (1) + ¢ (OB, () + ¢33 () ©Bs ()

By (1) = qu1(DOB, (1) + 42 (OB, (D) + 452 (OB (1) + 453 () ©Bo (1)

By(t) = W,(6) + qao(D)OBy () + ¢S (OB, (1)

Bs(t) = qeg(t)OBg(t) + qgo(t)©By(t)

Bg(t) = Wg(t) + qg1(t)©B1(t) + qg6(t)©B,(t)

By(t) = Wo(t) +qn()OB, ) (48-
54)

Where Wi(t) = W,(t) = e MG (t) + [le *©1] G(t) , Ws(t) = Wye(t) =
GO......... (55)

Taking Laplace transform of equation (55) and taking s — 0, we will get

Wy (0) = Wy (0) = Wg(0) = pg

In steady-state, the total fraction of time under which system is under repair is given by

: N
By, = limsBj = =2
5-0 Dy
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Where N, = (1 — pegpPss) (P12 + 1g) + Hspg)

And D, is same as in equation (47).
Rest Period:

At time t = 0, where system entered into regenerative state. Let us define probability of

repairman is at rest by R;(t), then we have

Ro(t) = qo1(t)OR,(t)

Ri(£) = q10(D)OR, (1) + q12(D@R, (1) + ¢ (DOR (8) + ¢ () ©OR(2)

Ry () = Wy () + 451 ()OR, (1) + G20 (DOR, (L) + g5 ()ORg(E) + g5 (()OR, (1)
Ro(t) = qao(DDORy(E) + 457 (©)OR, (£)

Re(t) = We(t) + qeg(t)ORg(t) + qgo(t)ORy(t)
Rg(t) = qg1(t)OR;(t) + qg(t)©OR,(t)

Ry(t) = gen(DOR, () (59-
65)

Where W,(t) = e ME;(t) + [le M ©1] E5(t) , W, (t) = E3(t)
...... (66)

Taking Laplace transform of equation (66) and solving for s — 0, we get

W5 (0) = Wg(0) = pe

In steady-state solution, the total fraction of time for which the repairman is at rest is given by

. N
Ry = limsR;= =
50 Dy

(3)

Where N3 = g [Plz(l — PesPss) T+ pég)pss + P16

And D, is same as in equation (47).
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9. Expected number of visits by expert repairman

Vo(t) = Qo1 (D@1 + 13 (0]

V() = Qo) @Vo(®) + QD @V,(®) + 0P O B[1 + V()] + ¢ () OV, ()
V() = Qu(®)OVi(D) + Qu(O)S[1 + Vo (8)] + 053 () OV5(1) + Q53 () OVo ()
V() = Qu(®OVo(®) + QL (OV, (D)

Vs(t) = Qeg(t)@Vg(t) + Qso (1) S[1 + Vo (1)]

Ve(t) = Qg1 (1) @V1(t) + Qgs () SV (t)

V@) = Q& (70-
76)

In steady-state, the number of visits per unit time is given by taking s - 0 and t — oo

Vo= lim 28 = lim[svg*(s)] = 2
tooo t S—00 Dq
......... 77
Where N,= (1- Psepse)[l - Pﬁ) —P12P21 t P12P24P40] — P12 (Pég)Pm + ng)) -

ng)l’wl’ss(l — P12) + Des (ng)Pss - Pg)Pm)

And D, is same as in equation (47).

10. Cost-Benefit analysis
The expected total profit in steady state is given by

P, = CyAy — C1By — C3Ry — G531

Where C, is revenue per unit time of the system.
C, is cost per unit time for which the repairman is busy.
C, is cost per unit time for which the repairman is at rest.

C5 is cost per visit of the repairman.
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11. Comparison Analysis
MTSF vs. Failure Rate of the Main Unit with Initial State SO

The MTSF was calculated using various failure rate (1) values for the operating unit, as stated
in Table 1.1. Figure 1 depicts the related graphs. This has been done by taking particular
values of the likelihood of the system that requires repair (p12) and replacement (p24) for the
distinct circumstances. (i) p12 > p24 (p12 = 0.75; p24 = 0.25), (ii) p12 = p24 (p12 = 0.50;
p24 = 0.50), or (iii) p12 < p24 (p12 = 0.25; p24 = 0.75).

Table 1.1 and Figure 1 illustrate that increasing the operational unit's failure rate (L)
decreases the system's MTSF (TO0) for a fixed value of p12/p24. Changing A from 0.0015 to
0.0095 results in a 75% to 18% drop in MTSF. Notably, the percentage decline in MTSF is
practically equal in all three cases. For a particular operating unit failure rate (A), MTSF
decreases as the chance of system repair decreases or increases. When p12 is reduced from
0.75 to 0.25, the MTSF value decreases by 26.34% for A = 0.0095 and 28.22% for A =0.001.

TABLE-1.1

MTSF To vs. Failure Rate 1

Sr. No. A To To To

P12=0.75; p24=0.25 | p12=10.50; p24a=0.50 | p12=0.25; p24=0.75

1 0.0015 210617.5000 175999.0313 151193.4063
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2 0.0025 53185.5743 44518.4922 38300.5469
3 0.0035 23876.4190 20018.9805 17248.0626
4 0.0045 13565.8604 11393.0938 9830.2969
5 0.0055 8769.6768 7377.1919 6374.3794
6 0.0065 6151.4351 5183.1207 4484.8975
7 0.0075 4564.9668 3852.5879 3338.2757
8 0.0085 3530.2581 2984.1128 2589.3250
9 0.0095 2817.4273 2385.3301 2072.5977
200000 - —&—T (p,>p,)p,=0.75 p,=0.25
80000 1 ——T, (p,=p,) p,=0.50 p,=0.50
] —&—T, (P,<P,)P,=0.25 p,=0.75
160000 -
140000 -
120000 -
To 1000004
80000 -
60000 -
40000
20000 -
0 ——a—a—3

r - r - 1 - 1 ~ 1~ 1 1T °r T " 1T ° 1
0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010

A

Figure 1 (MTSF To vs. Failure Rate of the system)

MTSF vs. Failure Rate of the Main Unit with Initial State S1
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Table 1.2 shows an assessment of the MTSF for different operating unit failure rate values (L)

based on the system's repair (p12) and replacement (p24) scenarios. Figure 2 displays the

related graphs for these cases.
Table 1.2 and Figure 2 show that at a given value of pl12/p24, the system's MTSF (T1)

decreases fast when the operating unit's failure rate (1) increases. When A varies between
0.0015 and 0.0095, the percentage drop in MTSF ranges from 74.85% to 18.51%. The
percentage decrease in T1 is essentially comparable in all three scenarios.

T1 reduces for a given A as p12 lowers or p24 increases. T1 reduces by 27.54% at A = 0.0095
and 28.35% at A = 0.0015 when p12 declines from 0.75 to 0.25. At higher failure rates (L),

the MTSF (T1) fluctuates less for a given variance in p12.

TABLE-1.2
MTSF T: vs. Failure Rate 4
Sr. No. A T T1 T1
P12=0.75; p22=0.25 | p12 = 0.50; p2s =|p1z = 0.25; pas =
0.50 0.75
1 0.0015 209919.1563 175277.5626 150448.1719
2 0.0025 52897.3282 44303.6641 37983.8282
3 0.0035 23721.5333 19853.0391 16974.1778
4 0.0045 13477.6543 11296.5928 9627.8311
5 0.0055 8621.4795 7222.3571 6214.7637
6 0.0065 6029.9097 5056.0621 4353.8492
7 0.0075 4462.4932 3745.3702 3327.6326
8 0.0085 3442.0740 2891.7757 2493.9849
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9 0.0095 | 2740.3570 2404.5665 1989.1618
200000 —=—T(p,>p,) p,=0.75,p,=0.25
180000 - —&—T.(p,=p,) P,=0.50; p,=0.50
S i —A—T.(p, <p,)p,=0.25; p,=0.75
140000
120000 -
s 100000
80000
60000
40000 -
200001
0- ——a———a— &
0001 0002 0003 0004 0005 0.006 0007 0008 0009 0010

12. Conclusion

A

Figure 2 (MTSF T1 vs. Failure Rate 4 of the Main Unit)

Using route analysis, the MTSF and availability of the two-unit cold standby system were

quickly and readily estimated. As a positional metric, MTSF has been shown to be reliant on

the beginning state. On the other hand, by supposing the beginning states to be SO and S1, it

is established that MTSF is dependent on the starting state. On the other hand, by setting the

beginning states to SO and S1, it was observed that the system's steady state availability,
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which is the global measure, is the same, even when measured independently.

Observations from the system analysis show that, for any fixed value of the probability of
minor or major failures and the inspection, replacement, and repair rates, all of the MTSF of
the system with respect to SO, S1 (the initial states) decrease rapidly with the increase in the

operating unit's failure rate (L).
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