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Abstract : 

The revive (repair) and sustainance aspects of a two-unit cold standby system are examined 

in this model. The idea of a rest period is taken into account, meaning that if the repairman 

has to take a break before finishing the unit that has failed, another repairman may be brought 

in to continue the work. While the distribution for repair, rest, and patience durations is 

assumed to be arbitrary with various probability density functions, the failure time follows an 

exponential distribution. Semi-Markov processes are used to calculate a number of 

dependability metrics, including mean time to system failure (MTSF), steady-state 

availability, busy period, and projected number of server visits. 

 

keywords: Failed unit, repaired unit, repairman, patience time, MTSF, Availability.  

1. Introduction 

Due to the growing need in the modern business, a great deal of effort has been done on 

different kinds of one- or two-unit redundant systems. The employment of extra parts in 

addition to the primary unit to increase system dependability is referred to as "redundant 

components." These spare parts are stored so they may be utilized in the event that the 
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primary unit malfunctions. Standby units come in two varieties: heated standby units and cold 

standby units. 

Warm standby units have the potential to fail while waiting in the standby state, whereas cold 

standby units cannot fail while they are waiting. The ideas of redundant systems, including 

repair time, operation and rest time, availability, busy period, and failures owing to various 

types of mistake, have been the subject of several studies. 

S.K. Barak, M.S. Barak, and S.C. Malik (2016) investigated a two-unit cold standby system 

using preventive maintenance and repair. The possibility of repairing the failed unit is 

evaluated following inspection. They graphed the trend for various reliability metrics 

computed using the semi-Markov process and the regenerating point approach for arbitrary 

parameter and cost values. 

Renu and P. Bhatia (2019) studied two high-pressure die casting machines where the 

secondary units functioned for the maximum permissible time, with two maintenance 

facilities. Various dependability metrics were investigated in every potential circumstan 

C. Aggarwal and S.C. Malik (2020) considered a repairable standby system that could 

continue to operate while the server was being fixed. They conducted a thorough examination 

of a cold standby repairable system consisting of two identical units, taking into consideration 

the stochastic idea of server rest intervals between repairs. The expressions for Mean Time to 

System Failure (MTSF), availability, server busy period due to repair, projected number of 

repairs, and profit function were calculated using the semi-Markov process and regenerating 

point approach. The profit of the system model was calculated using changes in income per 

unit time, server downtime expenses, and repair expenditures per unit time. 

C. Aggarwal, N. Ahlawat, and S.C. Malik (2021) studied the profitability of a cold standby 

system in which preventative maintenance was prioritized above repair. They studied one 

server that was permitted to rest after each repair but not after preventative maintenance.To 

conduct the profit analysis, the revenue per unit uptime and cost functions associated with 

repair activities were considered 

In this research, we examined a two-unit cold standby system from the perspectives of revival 

and sustainability. We define revive as fixing the failing unit, and the same repairing facility 

is regarded. There may be times when the repairman has to rest before fixing the failing 
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device, or the repair may be completed without rest. If the failing unit is left unattended 

during the repairman's rest interval, another repairman takes up the repair. 

  

 

2. Description of model and Assumptions: 

i.The system consists of two identical units. One unit is operational, and the other is 

maintained on cold standby.  

ii.If one unit fails, the backup unit will take over immediately, while the failing unit is 

repaired.  

iii.If both units fail, the system fails.  

 

iv.After repair, the failed item will act as if it were new.  

v.Each unit's time to failure follows an exponential distribution, but repair and patience times 

follow an arbitrary distribution.  

All random variables are mutually independent. 

 

 

3. Nomenclature 

𝛼                                probability that the repairman does not need rest before repair is over  

𝛽                                probability that the repairman does need rest before repair is over 

𝜆                                 constant failure rate of the operative unit 

O                                operative state of unit 

CS                              unit is in cold standby 

g(t)                            p.d.f. of repair time of unit 

G(t)                            c.d.f. of repair time of unit 
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r(t)                             p.d.f. of rest time of unit 

R(t)                            c.d.f. of rest time of unit 

p1(t)                           p.d.f. of patience time of unit 

P1(t)                           c.d.f. of patience time of unit 

Fur                              failed unit under the repair of repairman  

Fcr                              repair of the failed unit is continuing from the previous state 

Frr                              repairman is at rest and failed unit is waiting for repair 

FrR                              rest of the repairman is continuing from previous state while failed unit  

                                   is waiting for repair 

Fwr                             failed unit is waiting for repair 

Fra                              failed unit under repair of another repairman who resumes repair 

FAr                             repair by another repairman is continuing from previous state 
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4. Transition probabilities 

The transition probabilities are: 

ⅆ𝑄01(𝑡) =  𝜆𝑒−𝜆𝑡 ⅆ𝑡 

ⅆ𝑄10(𝑡) =  𝛼𝑒−𝜆𝑡𝑔(𝑡)ⅆ𝑡 

ⅆ𝑄12(𝑡) =  𝛽𝑒−𝜆𝑡 𝑔(𝑡)ⅆ𝑡 

ⅆ𝑄13(𝑡) =  𝜆𝑒−𝜆𝑡 𝐺(𝑡)̅̅ ̅̅ ̅̅ ⅆ𝑡 

ⅆ𝑄16
(3)(𝑡) = (𝜆𝑒−𝜆𝑡©𝛽)𝑔(𝑡)ⅆ𝑡 =  𝛽(1 − 𝑒−𝜆𝑡)𝑔(𝑡)ⅆ𝑡 

ⅆ𝑄11
(3)(𝑡) = (𝜆𝑒−𝜆𝑡©𝛼)𝑔(𝑡)ⅆ𝑡 =  𝛼(1 − 𝑒−𝜆𝑡)𝑔(𝑡)ⅆ𝑡 

ⅆ𝑄21(𝑡) = 𝑒−𝜆𝑡𝑟(𝑡)𝑃1(𝑡)̅̅ ̅̅ ̅̅ ̅ⅆ𝑡 =  𝑒−𝜆𝑡𝐸1(𝑡)ⅆ𝑡 
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where 𝐸1(𝑡) =  𝑟(𝑡)𝑃1(𝑡)̅̅ ̅̅ ̅̅ ̅                            . 

ⅆ𝑄24(𝑡) = 𝑒−𝜆𝑡𝑝1(𝑡)𝑅(𝑡)̅̅ ̅̅ ̅̅ ⅆ𝑡 =  𝑒−𝜆𝑡𝐸2(𝑡)ⅆ𝑡 

where 𝐸2(𝑡) =  𝑝1(𝑡)𝑅(𝑡)̅̅ ̅̅ ̅̅              . 

ⅆ𝑄25(𝑡) =  𝜆𝑒−𝜆𝑡 𝑅(𝑡)̅̅ ̅̅ ̅̅  𝑃1(𝑡)̅̅ ̅̅ ̅̅ ̅ =  𝑒−𝜆𝑡𝐸3(𝑡)ⅆ𝑡 

where 𝐸3(𝑡) =  𝑅(𝑡)̅̅ ̅̅ ̅̅  𝑃1(𝑡)̅̅ ̅̅ ̅̅ ̅               . 

ⅆ𝑄28
(5)(𝑡) =  (𝜆𝑒−𝜆𝑡©1) 𝑟(𝑡)𝑃1(𝑡)̅̅ ̅̅ ̅̅ ̅ⅆ𝑡 =  (1 − 𝑒−𝜆𝑡)𝐸1(𝑡)ⅆ𝑡 

ⅆ𝑄29
(5)(𝑡) =  (𝜆𝑒−𝜆𝑡©1) 𝑝1(𝑡)𝑅(𝑡)̅̅ ̅̅ ̅̅ ⅆ𝑡 =  (1 − 𝑒−𝜆𝑡)𝐸2(𝑡)ⅆ𝑡 

ⅆ𝑄40(𝑡) =  𝑒−𝜆𝑡𝑔(𝑡)ⅆ𝑡 

ⅆ𝑄47(𝑡) =  𝜆𝑒−𝜆𝑡 𝐺(𝑡)̅̅ ̅̅ ̅̅ ⅆ𝑡 

ⅆ𝑄41
(7)(𝑡) =  (𝜆𝑒−𝜆𝑡©1)𝑔(𝑡)ⅆ𝑡 =  (1 − 𝑒−𝜆𝑡)𝑔(𝑡)ⅆ𝑡 

ⅆ𝑄68(𝑡) =  𝑟(𝑡)𝑃1(𝑡)̅̅ ̅̅ ̅̅ ̅ⅆ𝑡 =  𝑒−𝜆𝑡𝐸1(𝑡)ⅆ𝑡 

ⅆ𝑄69(𝑡) =  𝑝1(𝑡)𝑅(𝑡)̅̅ ̅̅ ̅̅ ⅆ𝑡 =  𝑒−𝜆𝑡𝐸2(𝑡)ⅆ𝑡 

ⅆ𝑄81(𝑡) =  𝛼𝑔(𝑡)ⅆ𝑡 

ⅆ𝑄86(𝑡) =  𝛽𝑔(𝑡)ⅆ𝑡 

ⅆ𝑄91(𝑡) =  𝑔(𝑡)ⅆ𝑡                                                                                                       ……(1-

19) 

The non-zero elements 𝑝𝑖𝑗  of transition state probabilities are as follows: 

𝑝01 =  1, 𝑝10 =  𝛼𝑔∗(𝜆), 𝑝12 =  𝛽𝑔∗(𝜆), 𝑝13 =  1 − 𝑔∗(𝜆), 𝑝16
(3)

=  𝛽(1 − 𝑔∗(𝜆)),  

𝑝11
(3)

=  𝛼(1 − 𝑔∗(𝜆)), 𝑝21 =  𝐸1
∗(𝜆), 𝑝24 =  𝐸2

∗(𝜆), 𝑝25 =  𝜆𝐸3
∗(𝜆), 𝑝28

(5)
= 𝐸1

∗(0) − 𝐸1
∗(𝜆),  

𝑝29
(5)

= 𝐸2
∗(0) − 𝐸2

∗(𝜆), 𝑝40 =  𝑔∗(𝜆), 𝑝47 =  1 − 𝑔∗(𝜆), 𝑝41
(7)

= 1 − 𝑔∗(𝜆), 𝑝68 =  𝐸1
∗(0),  

𝑝69 =  𝐸2
∗(0), 𝑝81 =  𝛼, 𝑝86 =  𝛽 , 𝑝91 =  1      

By using above transition state probabilities, it can be verified that  

𝑝01 =  1  

𝑝10 + 𝑝12 + 𝑝13 =  𝑝10 + 𝑝12 + 𝑝16
(3)

+ 𝑝11
(3)

=  1  

𝑝21 + 𝑝24 + 𝑝25 =  𝑝21 + 𝑝24 + 𝑝28
(5)

+ 𝑝29
(5)

=  1  

𝑝40 + 𝑝47 =  𝑝40 + 𝑝41
(7)

=  1  

𝑝68 + 𝑝69 =  𝑝81 + 𝑝86 =  𝑝91 =  1                                                                          ……(20-

24) 
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5. Mean Sojourn Time 

If T denotes mean sojourn time in state 0, then  

𝜇0 =  ∫ 𝑃(𝑇 > 𝑡)ⅆ𝑡 =  
1

𝜆
, 𝜇1 =  

1−𝑔∗(𝜆)

𝜆
 , 𝜇2 =  𝐸3

∗(𝜆) , 𝜇4 =  𝜇1 =  
1−𝑔∗(𝜆)

𝜆
 , 𝜇6 =  𝐸3

∗(0),  

𝜇9 =  𝜇8 =  ∫ 𝐺(𝑡)̅̅ ̅̅ ̅̅ ⅆ𝑡
∞

0
                                                                                                 

………(25) 

The unconditional mean time taken by the system to transit to any regenerative state when 

counting from the epoch of entry into that stage is, mathematically, expressed as  

 

𝑚𝑖𝑗 =  ∫ 𝑡ⅆ𝑄𝑖𝑗(𝑡)
∞

0
=  −

𝑑

𝑑𝑠
𝑞𝑖𝑗

∗ |𝑠=0                                                                           ………(26) 

Thus, 𝑚01 =  𝜇0, 𝑚10 + 𝑚12 + 𝑚13 =  𝑚40 + 𝑚47 = 𝜇1,     

𝑚10 + 𝑚12 + 𝑚11
(3)

+ 𝑚16
(3)

=  𝑚81 + 𝑚86 =  𝑚91 = 𝜇8  

𝑚21 + 𝑚24 + 𝑚25 =  ∫ 𝑡𝑒−𝜆𝑡[𝐸1(𝑡) + 𝐸2(𝑡) + 𝜆𝐸3(𝑡)]ⅆ𝑡
∞

0
 =  𝜉1  

𝑚21 + 𝑚24 + 𝑚28
(5)

+ 𝑚29
(5)

=  ∫ 𝑡𝑒−𝜆𝑡[𝐸1(𝑡) + 𝐸2(𝑡)]ⅆ𝑡
∞

0
 =  𝑚68 + 𝑚69 = 𝜉2  ………(27) 

6. Mean time to system failure 

Let us suppose the failed states as absorbing states. Also, by employing the arguments used 

for regenerative processes, we will obtain the following relations from: 

𝜙0(𝑡) =  𝑄01(𝑡) Ⓢ 𝜙1(𝑡) 

𝜙1(𝑡) =  𝑄13(𝑡) + 𝑄10(𝑡) Ⓢ 𝜙0(𝑡) + 𝑄12(𝑡) Ⓢ 𝜙2(𝑡) 

𝜙2(𝑡) =  𝑄25(𝑡) + 𝑄24(𝑡) Ⓢ 𝜙4(𝑡) + 𝑄21(𝑡) Ⓢ 𝜙1(𝑡) 

𝜙4(𝑡) =  𝑄47(𝑡) + 𝑄40(𝑡) Ⓢ 𝜙0(𝑡)                                                                          ……(28-

31) 

Taking the L.S.T. of the above equations (28-31) and solving for 𝜙0
∗∗(𝑠), we will get 

𝜙0
∗∗(𝑠) =  

𝑄01
∗∗ (𝑠)[𝑄12

∗∗ (𝑠){𝑄25
∗∗ (𝑠)+𝑄24

∗∗ (𝑠)𝑄47
∗∗ (𝑠)}+𝑄12

∗∗ (𝑠)]

1−𝑄01
∗∗ (𝑠)[𝑄10

∗∗ (𝑠)+𝑄12
∗∗ (𝑠)𝑄24

∗∗ (𝑠)𝑄40
∗∗ (𝑠)]−𝑄12

∗∗ (𝑠)𝑄21
∗∗ (𝑠)

                                              

………(32) 
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Now, the MTSF when the system starts from state 0 is  

𝑇0 =  𝑙𝑖𝑚
𝑠→0

1−𝜙0
∗∗(𝑠)

𝑠
=

𝑁

𝐷
                                                                                                     

………(33) 

Where 𝑁 =  𝜇0+𝜇1(1 + 𝑃12𝑝24) + 𝑘2𝑃12                                                             ………(34) 

and 𝐷 =  𝑝12(𝑝24𝑝47 + 𝑝25) +  𝑝12                                                                               

………(35) 

7. Availability Analysis 

𝑀𝑖(𝑡) denotes the probability that the system starting in up regenerative state is up at time t 

without passing through any regenerative state. Thus, we have  

𝑀0(𝑡) =  𝑒−𝜆𝑡 , 𝑀1(𝑡) =  𝑒−𝜆𝑡𝐺(𝑡)̅̅ ̅̅ ̅̅  , 𝑀2(𝑡) =  𝑒−𝜆𝑡𝐸3(𝑡)̅̅ ̅̅ ̅̅ ̅ , 𝑀4(𝑡) =  𝑒−𝜆𝑡𝐺(𝑡)̅̅ ̅̅ ̅̅        

………(36) 

Using the arguments of the theory of regenerative processes, the availability 𝐴𝑖(𝑡) is seen to 

satisfy  

𝐴0(𝑡) =  𝑀0(𝑡) + 𝑞01(𝑡)©𝐴1(𝑡) 

𝐴1(𝑡) =  𝑀1(𝑡) + 𝑞10(𝑡)©𝐴0(𝑡) + 𝑞12(𝑡)©𝐴2(𝑡) + 𝑞11
(3)(𝑡)©𝐴1(𝑡) + 𝑞16

(3)(𝑡)©𝐴6(𝑡)  

𝐴2(𝑡) =  𝑀2(𝑡) + 𝑞21(𝑡)©𝐴1(𝑡) + 𝑞24(𝑡)©𝐴4(𝑡) + 𝑞28
(5)(𝑡)©𝐴8(𝑡) + 𝑞29

(5)(𝑡)©𝐴9(𝑡) 

𝐴4(𝑡) =  𝑀4(𝑡) + 𝑞40(𝑡)©𝐴0(𝑡) + 𝑞41
(7)(𝑡)©𝐴1(𝑡)  

𝐴6(𝑡) =  𝑞68(𝑡)©𝐴8(𝑡) + 𝑞69(𝑡)©𝐴9(𝑡) 

𝐴8(𝑡) =  𝑞81(𝑡)©𝐴1(𝑡) + 𝑞86(𝑡)©𝐴6(𝑡) 

𝐴9(𝑡) =  𝑞91(𝑡)©𝐴1(𝑡)                                                                                             ……(37-

43) 

Taking Laplace transform of equation (36) and taking lim 𝑠 → 0, we will get 

𝑀0
∗(0) =  𝜇0 , 𝑀1

∗(0) =  𝜇1 , 𝑀2
∗(0) =  𝜇2 , 𝑀4

∗(0) =  𝜇4                                                  

………(44) 

The steady state availability of the system is given by  
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𝐴0 =  lim
𝑠→0

𝑠𝐴0
∗ (𝑠) = 

𝑁1

𝐷1
                                                                                                

………(45) 

Where 𝑁1 = (1 − 𝑝68𝑝86)[𝜇0(𝑝10 + 𝑝12𝑝24𝑝40) + 𝜇1(1 + 𝑝12𝑝24) + 𝜇2𝑝12 ………(46) 

and 𝐷1 =  𝜇0(1 − 𝑝68𝑝86)(𝑝10 + 𝑝12𝑝24𝑝40) + (1 + 𝑝12𝑝24)[𝜇8 + 𝑝12𝜉2] + 𝜉2(𝑝16
(3)

+

𝑝12𝑝28
(5)

𝑝86) + 𝜇8 [𝑝12(𝑝28
(5)

+ 𝑝69𝑝86) + 𝑝16
(3)

𝑝68 + 𝑝81(𝑝12𝑝29
(5)

+ 𝑝16
(3)

)]                  

………(47) 

8. Busy period analysis 

Busy period of the repairman: 

𝐵0(𝑡) =  𝑞01(𝑡)©𝐵1(𝑡) 

𝐵1(𝑡) =  𝑊1(𝑡) + 𝑞10(𝑡)©𝐵0(𝑡) + 𝑞12(𝑡)©𝐵2(𝑡) + 𝑞11
(3)(𝑡)©𝐵1(𝑡) + 𝑞16

(3)(𝑡)©𝐵6(𝑡)  

𝐵2(𝑡) =  𝑞21(𝑡)©𝐵1(𝑡) + 𝑞24(𝑡)©𝐵4(𝑡) + 𝑞28
(5)(𝑡)©𝐵8(𝑡) + 𝑞29

(5)(𝑡)©𝐵9(𝑡) 

𝐵4(𝑡) =  𝑊4(𝑡) + 𝑞40(𝑡)©𝐵0(𝑡) + 𝑞41
(7)(𝑡)©𝐵1(𝑡)  

𝐵6(𝑡) =  𝑞68(𝑡)©𝐵8(𝑡) + 𝑞69(𝑡)©𝐵9(𝑡) 

𝐵8(𝑡) =  𝑊8(𝑡) + 𝑞81(𝑡)©𝐵1(𝑡) + 𝑞86(𝑡)©𝐵6(𝑡) 

𝐵9(𝑡) =  𝑊9(𝑡) + 𝑞91(𝑡)©𝐵1(𝑡)                                                                               ……(48-

54) 

Where 𝑊1(𝑡) =  𝑊4(𝑡) =  𝑒−𝜆𝑡𝐺(𝑡)̅̅ ̅̅ ̅̅ + [𝜆𝑒−𝜆𝑡©1] 𝐺(𝑡)̅̅ ̅̅ ̅̅ , 𝑊8(𝑡) =  𝑊9(𝑡) =

 𝐺(𝑡)̅̅ ̅̅ ̅̅ ………(55) 

Taking Laplace transform of equation (55) and taking 𝑠 → 0, we will get 

𝑊1
∗(0) =  𝑊4

∗(0) =  𝑊8
∗(0) =  𝜇8                                                                               

………(56) 

In steady-state, the total fraction of time under which system is under repair is given by 

𝐵0 =  lim
𝑠→0

𝑠 𝐵0
∗ =  

𝑁2

𝐷1
                                                                                                    

………(57) 
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Where 𝑁2 =  (1 − 𝑝68𝑝86)(𝑝12 + 𝜇8) + 𝜇8𝑝16
(3)

                                                             

………(58) 

And 𝐷1 is same as in equation (47). 

Rest Period: 

At time 𝑡 = 0, where system entered into regenerative state. Let us define probability of 

repairman is at rest by 𝑅𝑖(𝑡), then we have 

𝑅0(𝑡) =  𝑞01(𝑡)©𝑅1(𝑡) 

𝑅1(𝑡) =  𝑞10(𝑡)©𝑅0(𝑡) + 𝑞12(𝑡)©𝑅2(𝑡) + 𝑞11
(3)(𝑡)©𝑅1(𝑡) + 𝑞16

(3)(𝑡)©𝑅6(𝑡)  

𝑅2(𝑡) =  𝑊2(𝑡) + 𝑞21(𝑡)©𝑅1(𝑡) + 𝑞24(𝑡)©𝑅4(𝑡) + 𝑞28
(5)(𝑡)©𝑅8(𝑡) + 𝑞29

(5)(𝑡)©𝑅9(𝑡) 

𝑅4(𝑡) =  𝑞40(𝑡)©𝑅0(𝑡) + 𝑞41
(7)(𝑡)©𝑅1(𝑡)  

𝑅6(𝑡) =  𝑊6(𝑡) + 𝑞68(𝑡)©𝑅8(𝑡) + 𝑞69(𝑡)©𝑅9(𝑡) 

𝑅8(𝑡) =  𝑞81(𝑡)©𝑅1(𝑡) + 𝑞86(𝑡)©𝑅6(𝑡) 

𝑅9(𝑡) =  𝑞91(𝑡)©𝑅1(𝑡)                                                                                             ……(59-

65) 

Where 𝑊2(𝑡) =  𝑒−𝜆𝑡𝐸3(𝑡) + [𝜆𝑒−𝜆𝑡©1] 𝐸3(𝑡) , 𝑊6(𝑡) =  𝐸3(𝑡)                                      

……(66) 

Taking Laplace transform of equation (66) and solving for 𝑠 → 0, we get 

𝑊2
∗(0) =  𝑊6

∗(0) =  𝜇6                                                                                                

………(67) 

In steady-state solution, the total fraction of time for which the repairman is at rest is given by 

𝑅0 =  𝑙𝑖𝑚
𝑠→0

𝑠 𝑅0
∗ =  

𝑁3

𝐷1
                                                                                                    

………(68) 

Where 𝑁3 =  𝜇6[𝑝12(1 − 𝑝68𝑝86) + 𝑝28
(5)

𝑝86 + 𝑝16
(3)]                                                  

………(69) 

And 𝐷1 is same as in equation (47). 
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9. Expected number of visits by expert repairman 

𝑉0(𝑡) =  𝑄01(𝑡)Ⓢ [1 + 𝑉1(𝑡)] 

𝑉1(𝑡) =  𝑄10(𝑡)Ⓢ 𝑉0(𝑡) + 𝑄12(𝑡)Ⓢ 𝑉2(𝑡) + 𝑄16
(3)(𝑡)Ⓢ [1 + 𝑉6(𝑡)] + 𝑄11

(3)(𝑡)Ⓢ 𝑉1(𝑡)  

𝑉2(𝑡) =  𝑄21(𝑡)Ⓢ 𝑉1(𝑡) + 𝑄24(𝑡)Ⓢ [1 + 𝑉4(𝑡)] + 𝑄28
(5)(𝑡)Ⓢ 𝑉8(𝑡) + 𝑄29

(5)(𝑡)Ⓢ 𝑉9(𝑡)  

𝑉4(𝑡) =  𝑄40(𝑡)Ⓢ 𝑉0(𝑡) + 𝑄41
(7)(𝑡)Ⓢ 𝑉1(𝑡)  

𝑉6(𝑡) =  𝑄68(𝑡)Ⓢ 𝑉8(𝑡) + 𝑄69(𝑡)Ⓢ [1 + 𝑉9(𝑡)] 

𝑉8(𝑡) =  𝑄81(𝑡)Ⓢ 𝑉1(𝑡) + 𝑄86(𝑡)Ⓢ 𝑉6(𝑡) 

𝑉9(𝑡) =  𝑄91(𝑡)Ⓢ 𝑉1(𝑡)                                                                                             ……(70-

76) 

In steady-state, the number of visits per unit time is given by taking 𝑠 → 0 and 𝑡 → ∞ 

𝑉0 =  lim
𝑡→∞

𝑉0(𝑡)

𝑡
=  𝑙𝑖𝑚

𝑠→∞
[𝑠𝑉0

∗∗(𝑠)] =  
𝑁4

𝐷1
                                                                            

………(77) 

Where 𝑁4 =  (1 − 𝑝68𝑝86)[1 − 𝑝11
(3)

− 𝑝12𝑝21 + 𝑝12𝑝24𝑝40] − 𝑝12(𝑝28
(5)

𝑝81 + 𝑝29
(5)

) −

𝑝28
(5)

𝑝69𝑝86(1 − 𝑝12) + 𝑝68(𝑝29
(5)

𝑝86 − 𝑝16
(3)

𝑝81)                                                                     

………(78) 

And 𝐷1 is same as in equation (47). 

10. Cost-Benefit analysis 

The expected total profit in steady state is given by 

𝑃2 =  𝐶0𝐴0 − 𝐶1𝐵0 − 𝐶2𝑅0 − 𝐶3𝑉0                                                                                

………(79) 

Where 𝐶0 is revenue per unit time of the system. 

            𝐶1 is cost per unit time for which the repairman is busy. 

            𝐶2 is cost per unit time for which the repairman is at rest. 

            𝐶3 is cost per visit of the repairman. 
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11. Comparison Analysis 

MTSF vs. Failure Rate of the Main Unit with Initial State S0   

The MTSF was calculated using various failure rate (λ) values for the operating unit, as stated 

in Table 1.1. Figure 1 depicts the related graphs. This has been done by taking particular 

values of the likelihood of the system that requires repair (p12) and replacement (p24) for the 

distinct circumstances. (i) p12 > p24 (p12 = 0.75; p24 = 0.25), (ii) p12 = p24 (p12 = 0.50; 

p24 = 0.50), or (iii) p12 < p24 (p12 = 0.25; p24 = 0.75). 

    

Table 1.1 and Figure 1 illustrate that increasing the operational unit's failure rate (λ) 

decreases the system's MTSF (T0) for a fixed value of p12/p24. Changing λ from 0.0015 to 

0.0095 results in a 75% to 18% drop in MTSF. Notably, the percentage decline in MTSF is 

practically equal in all three cases. For a particular operating unit failure rate (λ), MTSF 

decreases as the chance of system repair decreases or increases. When p12 is reduced from 

0.75 to 0.25, the MTSF value decreases by 26.34% for λ = 0.0095 and 28.22% for λ = 0.001. 

  

 

 

 

 

TABLE- 1.1 

MTSF T0 vs. Failure Rate 𝜆  

Sr. No. 𝜆 T0   

 p12 = 0.75; p24 = 0.25          

T0    

p12 = 0.50; p24 = 0.50 

T0  

p12 = 0.25; p24 = 0.75  

1 0.0015 210617.5000 175999.0313 151193.4063 
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2 0.0025   53185.5743 44518.4922 38300.5469 

3 0.0035   23876.4190 20018.9805 17248.0626 

4 0.0045    13565.8604 11393.0938 9830.2969 

5 0.0055      8769.6768 7377.1919 6374.3794 

6 0.0065      6151.4351 5183.1207 4484.8975 

7 0.0075       4564.9668 3852.5879 3338.2757 

8 0.0085       3530.2581 2984.1128 2589.3250 

9 0.0095       2817.4273 2385.3301 2072.5977 

 

                                                                                                            

                                      Figure 1 (MTSF T0 vs. Failure Rate of the system)    

MTSF vs. Failure Rate of the Main Unit with Initial State S1  
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Table 1.2 shows an assessment of the MTSF for different operating unit failure rate values (λ) 

based on the system's repair (p12) and replacement (p24) scenarios. Figure 2 displays the 

related graphs for these cases.  

Table 1.2 and Figure 2 show that at a given value of p12/p24, the system's MTSF (T1) 

decreases fast when the operating unit's failure rate (λ) increases. When λ varies between 

0.0015 and 0.0095, the percentage drop in MTSF ranges from 74.85% to 18.51%. The 

percentage decrease in T1 is essentially comparable in all three scenarios. 

T1 reduces for a given λ as p12 lowers or p24 increases. T1 reduces by 27.54% at λ = 0.0095 

and 28.35% at λ = 0.0015 when p12 declines from 0.75 to 0.25. At higher failure rates (λ), 

the MTSF (T1) fluctuates less for a given variance in p12. 

 

TABLE- 1.2 

MTSF T1 vs. Failure Rate 𝝀  

Sr. No. 𝝀 T1  

 p12 = 0.75; p24 = 0.25 

T1  

p12 = 0.50; p24 = 

0.50 

T1  

p12 = 0.25; p24 = 

0.75 

1 0.0015 209919.1563 175277.5626 150448.1719 

2 0.0025 52897.3282 44303.6641 37983.8282 

3 0.0035 23721.5333 19853.0391 16974.1778 

4 0.0045 13477.6543 11296.5928 9627.8311 

5 0.0055 8621.4795 7222.3571 6214.7637 

6 0.0065 6029.9097 5056.0621 4353.8492 

7 0.0075 4462.4932 3745.3702 3327.6326 

8 0.0085 3442.0740 2891.7757 2493.9849 
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9 0.0095 2740.3570 2404.5665 1989.1618 

 

 

 

 

                                Figure 2 (MTSF T1 vs. Failure Rate 𝝀 of the Main Unit)   

12. Conclusion 

Using route analysis, the MTSF and availability of the two-unit cold standby system were 

quickly and readily estimated. As a positional metric, MTSF has been shown to be reliant on 

the beginning state. On the other hand, by supposing the beginning states to be S0 and S1, it 

is established that MTSF is dependent on the starting state. On the other hand, by setting the 

beginning states to S0 and S1, it was observed that the system's steady state availability, 

Journal For Basic Sciences ISSN NO : 1006-8341

Volume 25, Issue 8, 2025 PAGE NO: 598



which is the global measure, is the same, even when measured independently.  

Observations from the system analysis show that, for any fixed value of the probability of 

minor or major failures and the inspection, replacement, and repair rates, all of the MTSF of 

the system with respect to S0, S1 (the initial states) decrease rapidly with the increase in the 

operating unit's failure rate (λ). 
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