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Abstract:

The growing use of titanium dioxide nanoparticles (TiO2 NPs) across miscellaneous fields
has surpassed to a growing concern concerning their referring to practices or policies that do
not negatively affect the environment adulteration and certain human uncovering.
Consequently, significant research works have existed in the direction of understanding the
belongings of TiO2NPs on both persons and the surroundings. Notably, TiO2 NPs
uncovering has happened guide multiple degradations of the central nervous system. This
review aims to determine a survey of the recorded neurotoxic effects of TiO2 NPs indifferent
class and artificial models. Following uncovering, TiO2 NPs can reach the mind, although the
particular machine and length of atoms that cross the blood-mind obstacle (BBB) wait hazy.
Exposure to TiO2 NPs has existed shown to encourage oxidative stress, advance
Neuroinflammation, upset intelligence biochemistry, and eventually impair neuronal function
and makeup. Subsequent neuronal damage can enhance miscellaneous concerned with
manner of behaving disorders and play a significant function in the attack and progress of
neuro developmental or neurodegenerative afflictions. Moreover, the neurotoxic potential of
TiO2NPs can be affected by miscellaneous determinants, containing uncovering
characteristics and the physicochemical characteristics of the TiO2 NPs. However, a orderly
corresponding of the neurotoxic belongings of TiO2 NPs accompanying different traits under
miscellaneous uncovering environments is still wanting. Additionally, our understanding of
the underlying neurotoxic methods applied by TiO2 NPs debris wanting and fragmented.
Given these information break, it is authoritative to further search the neurotoxic hazards and
risks guide exposure to TiO2 NPs.

Keywords: TiO2 NPs, neurotoxic belongings, oxidative stress, neuronal damage, neurotoxic
systems.
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Nano-materials (NMs) are fabrics outlined as bearing at least individual measure varying
from 1 to 100 nanometers (nm). Titanium dioxide nanoparticles (TiO2 NPs) rank between the
top five NMs used in services crop, in the way that bread additives, toys, cosmetic,
photoelectric commodity, and pharmaceuticals (Figure 1).!* Consequently, the attendance of
TiO2 NPs in air, water, soil, and other incidental television has evenly raised due to their
extensive use.’ This increasing request and adulteration have fashioned human and animal
exposure to TiO2 NPs certain. Apart from skin uncovering, breathing, and spoken exposure,
additional routes of uncovering to TiO2 NPs contain intraperitoneal dose, subcutaneous
injection, and subcutaneous injection.4 Importantly, however the route of uncovering, TiO2
NPs can eventually enter the fundamental distribution and translocate to differing tissues and
tools (Figure 2).* As the accumulation of TiO2 NPs in the material increases, the mixed well

being hazards enhance more severe.’
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Figure 1 Application of TiO; NPs
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Figure 2 TiO; NPs can enter the human body through different ways and

accumulate in the body, posing a threat to human health.
Before the rise of nanotechnology, TiO2 was established in the form of fine atoms (FPs), that
were thought-out as poor dissolved and reduced toxicity pieces.® However, few studies have
belied this view, to a degree lung tumors in rats unprotected to extreme levels of TiO2 FPs
for two age.’” Furthermore, TiO2 has happened top-secret all at once 2B cancer-causing agent
(possibly malignant to persons) for one International Agency for Research on Cancer.?
Although the distinguishing carcinogenicity of TiO2 FPs is still discussed, skilled is certainly
that TiO2 FPs pose a health risk.” Compared to TiO2 FPs, TiO2 NPs present more powerful
catalytic action and bioactivity on account of their nano scale ranges.” Consequently, the
toxicity of TiO2 NPs cannot be alone implicit from the known toxicology of TiO2 FPs, nor
calm have in mind utilizing normal forms.!” In current age, extensive investigation of the
belongings of TiO2 NPs uncovering on human strength more indicates the high concern
about the security of TiO2 NPs. In addition to seeing all appropriate uncovering sketches and
organic in-between steps, understanding the final poisonous consequence is fault-finding for
human well-being risk estimate.!! Results from another teenager cohort study in China
determined that Ti can cross the placental obstruction (PB) to harm fetuses that are intensely
alert referring to practices or policies that do not negatively affect the environment
warnings.!? Several epidemiological studies have habitual that Ti exposure increases the risk
of un favourable beginning consequences, containing affecting animate nerve organs hose
defects, preterm beginning, fetal distress, and depressed beginning pressure.!>"'> Moreover,
TiO2 NP uncovering can have disadvantageous belongings on the health of the society
further the embryo. Emerging epidemiological evidence plans that greater levels of urinary or
ancestry Ti are guide an increased risk of differing un favourable well-being belongings,
containing diabetes and cardiopulmonary disorders (Figure 2).!!° In current years, lab
studies on the toxicity of TiO2 NPs have surpassed epidemiological studies. Common animal
models to a degree rodent, rats, zebra fish, and Drosophila have existed used to study TiO2
NPs. In vivo, studies have proved that TiO2 NPs uncovering can be linked to body part
redness, pneumoconiosis or anthracosis, heart failure, generative toxicity, retinal
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deteriorations, etc.?>>* In vitro, studies have further supported these poisonous belongings of
TiO2 NPs.>>2® Given that nanoparticles can record the intelligence, concerns concerning
their neurotoxic belongings, including those of TiO2 NPs, have acquire meaningful
consideration.?

The entry of TiO2 NPs into the brain mainly occurs through the blood-brain barrier (BBB),
via absorption-mediated transversion or intranasal pathways.’’*! However, the mechanisms
by which nano-titanium dioxide penetrates and targets different brain regions remain
unknown. The degree of TiO> NPs accumulation in each brain region closely correlates with
the extent of neurotoxic effects. Common neurotoxic effects include behavior deficits,
nervous system dysfunction, and structural changes induced by oxidative stress, autophagy,
inflammation, or the activation of specific signaling pathways.>?> Although emerging studies
support the role of TiO> NPs exposure as an environmental risk factor for human health,
conscientious and systematic investigations are scarce into the extent of TiO2 NPs
translocation to different brain regions and the resulting damage to the neuronal system in
relation to particle dose and particle size. The lack of information on the neurotoxicity of
TiO2 NPs also complicates risk assessment following exposure. Therefore, this paper will
mainly focus on current studies concerning the neurotoxicology of TiO2 NPs, while also
reviewing the molecular mechanisms underlying their neurotoxic effects to mitigate potential
damage resulting from exposure.*

2.Evidence from Epidemiological and Human Exposure Studies

In earlier years, population exposure to TiO2 NPs was primarily investigated among
occupational populations. Welding fumes, industrial waste combustion, and mineral mining
can all result in environmental contamination by TiO2 NPs, thereby increasing the exposure
risk for workers.23 Exposure to fumes from metal-inert gas soldering has been found to
increase the risk of Parkinson’s disease (PD).2* Although these fumes mainly consist of zinc,
copper, and iron, Andujar et al discovered an excessive accumulation of Ti in the lung tissue
sections of welders in 2014.23 Industrial waste, pesticides, and automobile exhaust are
common sources of environmental pollutants associated with neurotoxic effects.2® Among
various environmental pollutants, NPs can easily penetrate the BBB and induce neurotoxicity
by activating innate immune responses in astrocytes, microglia, and neurons.2® TiO> NPs are
a major component among environmental pollutants, with up to 760 tons of TiO> NPs being
released into the soil through sewage and sludge each year.2Z3 Currently, there is no direct
evidence of neurotoxic effects caused by TiO> NPs exposure in mineral miners, but a
previous study suggested a significantly increased inflammatory response in mineral miners
exposed to TiO2 NPs.22 It is well known that the occurrence of inflammatory reactions in
other organs is closely related to nervous system damage.*® With the increasing application of
TiO2 NPs, concerns have also arisen regarding the neurotoxic effects of non-occupational
populations exposed to TiO> NPs. A recent cohort study demonstrated that high levels of

urinary Ti during pregnancy were significantly associated with impaired language
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development, suggesting  that  TiO> NPs might act as developmental
neurotoxicants.! Furthermore, elevated levels of Ti in maternal hair were also significantly
associated with an increased risk of neural tube defects.*2 However, epidemiological studies
on the neurotoxic effects caused by TiO2 NPs are still limited. Currently, laboratory studies

are the main basis for evaluating the neurotoxicity of TiO> NPs.

3.Data Search

A review of the neurotoxic potential of TiO2 NPs was performed by a literature search of the
PubMed database from 2021 to October 10, 2025 using combinations of the following
keywords: Titanium dioxide nanoparticles exposure; E171 exposure; Titanium dioxide
nanoparticles neuron; Titanium dioxide nanoparticles brain; Titanium dioxide nanoparticles
behavior; and Titanium dioxide nanoparticles neurotoxicology. We used a two-step approach:
initial screening of all titles and abstracts followed by full-text review of pertinent review
articles, with one hundred forty-seven papers selected, including one hundred twenty-one
research papers, and citations within twenty-six reviews screened for additional studies not
identified in the electronic search, but no additional research papers were found through these
references.

We identified studies that had administered TiO2 NPs to the organism in vitro or in vivo for
experimental research; the organism groups studied primarily consisted of rodents, zebra fish,
and cells, with fifty-five studies done on rodents, twenty on zebra fish, two on Caenorhabd
itis elegans (C. elegans), one on each of Pheretima hawayana, Tegillarca granosa, and
Drosophila melanogaster, and forty-one using in vitro cells, including animal and human-
derived neuronal cells (Figure 3).

Neurotoxicity of TiO, Nanoparticles
(Search in Pubmed up to September 29, 2023, n=147)
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Figure 3 Study selection flow diagram. The flow chart illustrates the
number of citations and resources that underwent screening, exclusion,
and/or inclusion in the review.
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4.Neurotoxic Effects of TiO2 NPs in Zebra fish

Zebrafish (Danio rerio) is commonly used as in vivo model system for studying the toxicity of
nanomaterials due to its low cost, rapid growth, and significant homology to humans.** A total of 20
studies have investigated the neurotoxic effects of TiO2 NPs in zebrafish, with 11 of them examining
co-exposure to other compounds (Table 3). Among the 11 studies, 8 studies selected the embryonic
stage of zebrafish for TiO2 NPs exposure, 2 studies selected adult zebrafish, and one study selected
zebrafish larvae. The most commonly used dose of TiO2 NPs in studies involving co-exposure to
other compounds was 100 pg/L. So far, TiO2 NPs have been shown to enhance Pb,106,107
decabromodiphenyl oxide (BDE209),108 cypermethrin,109 triphenyl phosphate,110 bisphenol
A,111,112 difenoconazole,113 tetracycline,114 and microcystinLR115 -induced neurotoxicity. TiO2
NPs mainly enhance the neurotoxicity of these compounds by increasing their bio concentration and
bioavailability in zebrafish. Interestingly, co-exposure with TiO2 NPs did not alter
pentachlorophenol-induced neurotoxicity.*> Exposure to TiO2 NPs alone is also able to induce a
variety of neurotoxic effects in zebrafish. The embryonic stage of zebrafish is the most commonly
used exposure stage for TiO2 NPs exposure models, which may be attributed to the incomplete
development of the BBB during this period.*® TiO2 NPs exposure during the embryonic stage of
zebrafish significantly alters motor behavior, social behavior, and spatial recognition memory.*-*° In
addition to behavioral impairments, TiO2 NPs exposure causes oxidative stress, promotes neuronal
proliferation, decreases motor neuron axon length, alters gene expression, and increases cell
apoptosis.®>* Two study chose the adult stage of zebrafish for TiO2 NPs exposure, and their results

suggested that TiO2 NPs exposure caused cognitive deficit, promoted neuroinflammation, and

altered biochemical constituents of the brain.>>>®
Model System Particle Size Exposure Dose Neurotoxic Effects Ref.
Zebrafish embryos | 5 nm 0, 100 pg/L Enhanced Pb-induced neurotoxicity [106]
5 nm 0, 100 pg/L Enhanced BPA-induced neurotoxicity [rn
5-10 nm 0, 100 pg/L Enhanced DIF-induced neurotoxicity [113]
7.04 nm 0, 100 pg/L Enhanced Pb-induced neurotoxicity [107]
7.04 nm 0, 100 pg/L Enhanced BDE-209-induced neurotoxicity [108]
7.04 nm 0, | mg/L Enhanced CYP-induced neurotoxicity [109]
100, 300 nm 0, 100 pg/L Enhanced TPhP-induced neurotoxicity [110]
25 nm 0, 100 pg/L No changed PCP-induced neurotoxicity [116]
6.5 nm 0, 5, 10, 20, 40 pg/L Decreased spatial recognition memory, Altered biochemical | [I17]
constituents of the brain, Over proliferation of glial cells, Cell
apoptosis
7.04 nm 0, 0.1 mg/L Altered motor and social behaviors, Cell apoptosis, Oxidative | [118]
stress, Promoted neurcnal proliferation
14.1 + 0.6 nm 0, 0.1, I mg/L Altered motor and social behaviors, Cell apoptosis, Oxidative | [I19]
stress
21 nm 0, 0.01, 0.1, 1.0 mg/L | Altered motor behavior, Decreased CNS neurogenesis, [120]
Decreased motor neuron axon length, Altered gene
expression
30 nm 0, 100 pg/L Cell apoptosis [12n
334+ 1.9 nm 0,0.1, 1, 10 pg/mL Oxidative stress, Loss of DA secretion, Altered gene [122]
expression
50 nm 0.1 mg/mL Oxidative stress [123]
Zebrafish larvae / 0.5 mg/L Enhanced TC-induced neurotoxicity [114]
Adult zebrafish 5 nm 0, 100 pg/L Enhanced BPA-induced neurotoxicity [112]
26.98 + 0.85 nm 0, 100 pg/L Enhanced MCLR-induced neurotoxicity [115]
20 nm 0, 10, 100 ppm Altered biochemical constituents of the brain [124]
/ 10 pug/mL Caused cognitive deficit, Caused neuroinflammatory [125]
Note: The reported particle size reflects the diameter of primary particles.
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Table 1. Overview of Literature Investigating Neurotoxic Effects of TiO2 NPs in Zebra fish

Result
Neurotoxic Effects of TiO2 NPs in vitro Models

In vitro models are widely used to assess neurotoxic effects on cellular functions.’’Several
studies have evaluated the neurotoxic effects of TiO2 NPs using in vitro models. Primary
hippocampal and cortical neurons are widely used in vitro models for neurotoxicology testing
as they are easily polarized and form unique axons and dendrites. In addition, these models
are used to study neuronal polarization, axon/dendrite morphology, synaptic formation, and
central nervous system (CNS) functions.*® Exposure to TiO2 NPs impairs neuronal function,
inhibits neuroblast proliferation, reduces cell viability, and increases cell apoptosis by
promoting oxidative stress in both primary hippocampal and cortical neurons.’®%*
Furthermore, TiO2 NPs inhibit neurite outgrowth of hippocampal neurons by interfering with
glutamate metabolism and impairing N-methyl-D-aspartic acid (NMDA) receptor function.®
According to some previous studies, the suppression of axonal development, dendritic
development, and synapse development by TiO2 NPs was associated with decreased
expression of axon growth-related factors and inhibition of the Wnt/p-catenin and BDNF-
TrkB pathways.%6-8 See Table 5 for details.

Rat pheochromocytoma (PC12) cell line and human SH-SY5Y neuroblastoma cell line have
been used as models for neurotoxicity testing of TiO2 NPs (Table 5). PC12 cell line shows
morphological and functional differentiation similar to sympathetic neurons. PC12 cell line is
a suitable model for studying the chemical disruption of neuronal differentiation, synthesis,
storage, and release of neurotransmitters, function and regulation of ion channels, and the
interaction of compounds with membrane-bound receptors.®® A previous study revealed that
treatment of PC12 cells with TiO2 NPs (< 36 nm, < 200 pg/mL) decreased cell viability,
increased cell apoptosis via oxidative stress, inhibited the neurite outgrowth, disturbed cell
cycle, and disrupted the ubiquitin-proteasome system.’®’> The human-derived SH-SY5Y cell
line is preferred over the PC12 cell line as it avoids interspecific differences in chemical
action.161 The SH-SY5Y cell line is an excellent model for studying toxicity on proliferating
or differentiated cells because it can be maintained as neuroblasts or induced to differentiate
into more neuron-like morphologies.”> TiO2 NPs were shown to cause endoplasmic reticulum
(ER) stress, autophagy, inhibition of cell proliferation, disturbance of the microtubule
dynamics, and membrane damage in SH-SYSY cells.”*” Several in vivo studies investigated
the neurotoxic effects of TiO2 NPs on mouse hippocampus. However, one in vitro study
explored the neurotoxic effects of TiO2 NPs on mouse hippocampal neuronal HT22 cells.
The study revealed that TiO2 NPs increased apoptosis of HT22 cells via oxidative stress- and
calcium imbalance-mediated ER stress.*

Acute or prolonged exposure to TiO2 NPs is associated with toxic effects on neuronal and

glial cells.®! Glial cells are critical cells of the nervous system, which serve as tissue-resident
macrophages. Microglia are crucial regulators that influence nervous system development,
maintenance of the neural environment, and response to injury and repair.®> The immortalized
mouse microglia cell line BV2 is often used as an alternative for primary microglia in cell
experiments. Some previous studies showed that exposure of BV2 cells to TiO2 NPs was
associated with mitochondrial dysfunction and increased oxidative stress.®3** Astrocytes play
a key role in innate and adaptive immune responses in CNS injury.®* Due to advancements in
cell culture technology, primary astrocytes have become a common primary cell model.
Previous studies revealed that TiO2 NPs induced mitochondria damage, oxidative stress,
autophagy, neuro inflammation, and cell apoptosis in primary rat cortical astrocytes.3¢ 58
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Other studies employed human glial cell lines as in vitro models for neurotoxicity studies to
eliminate species differences. Some previous studies revealed that TiO2 NPs
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Model System Particle Size Exposure Dose Neurotoxic Effects Ref.
Primary hippocampal rat 5.5 nm 0,5, 15, 30 pg/mL Decreased cell viability, Increased levels of LDH, Cell apoptosis [139]
neurons
5.5 nm 0,5, 15, 30 pg/mL Inhibited neurite outgrowth by interfering with glutamate metabolism, Impaired NMDA receptor | [145]
function
5.5 nm 0, 1.25,2.5, 5 pg/mL Inhibited dendritic development, Inhibition of the Wnt/f-catenin pathway [147]
36.83 nm 0, 5, 15, 30 pg/mL Inhibited axonal development [146]
/ 0,5, 15, 30 g/mL Inhibited synapse development, Inhibition of the BDNF-TrkB pathway [148]
Primary rat cortical neurons 26.2 £ 10.7 nm 0, 30, 100 pg/mL Limited hazard for neuronal function [140]
6—142 nm 0, 3.1, 6.3, 12.5, 50 pg/mL Decreased cell viability [141]
200-700 nm 0, 5, 10, 15, 20 pg/mL Decreased proliferation of neuroblasts [142]
Primary mouse cortical 20-80 nm 20, 50 mglcmz Oxidative stress [144]
neurons
< 100 nm 0.01-300 pg/em?® Oxidative stress [143]
PCI2 cells 20-50 nm 0, 10, 50, 100 pg/mL Oxidative stress [149]
Cell apoptosis
<25 nm 0, 50, 100, 200 pg/mL Oxidative stress, Dysfunction of the ubiquitin-proteasome system, a-Syn aggregation [150]
< 36 nm 0,0.01,0.1, I, 10, 100 pg/mL | Inhibited the neurite outgrowth [151]
Anatase-20 nm 0, 25, 50, 100, 200 pg/mL Decreased cell viability, Increased levels of LDH, Oxidative stress, Cell apoptosis, Disturbed cell | [152]
Rutile-20 nm cycle, Altered gene expression
Micre-1000 nm
SH-SY5Y cells 5 nm 0, 5, 10, 50, 100 pg/mL Cell apoptosis, Oxidative stress, ER stress [153]
20 nm 0,2, 10, 50, 100 pg/mL Disturbed cell cycle, Oxidative stress, Membrane damage, Autophagy [154]
25 nm 0, 80, 120, 150 pg/mL Disturbed cell cycle [155]
100-150 nm 0, 100 pg/mL Altered cellular morphology, [156]
Disturbed the microtubule dynamics
115.73 £ 0.67 nm 0.75-75 pg/mL Inhibited cell proliferation [157]
/ 0,5, 10, 20, 40, 80, 160 ug/mL | Decreased cell viability, Increased levels of LDH, Promoted inflammation [158]
HT22 cells 50 nm 0, 50, 100, 200 pg/mL Cell apoptosis, Oxidative stress, ER stress [159]

Note: The reported particle size reflects the diameter of primary particles.

Table 5 Overview of the Literature on Neurotoxic Effects of TiO2 NPs on
Primary Neuron and Nerve Cell Lines

inhibited cell proliferation, induced morphological changes, decreased immuno-location of F-
actin fibers, and increased cell apoptosis in U374 cells.?*”° Furthermore, several studies have
investigated the neurotoxic effects of TiO2 NPs in a co-culture of glial cells and other cells.
For example, Yang et al showed that TiO2 NPs stimulate the inflammatory reaction in brain
microglia and damage neuron using a co-culture model of primary microglia and PC12 cell
line.”! Similarly, TiO2 NPs was shown to stimulate the inflammatory reaction in brain
microglia and damage neurons in co- culture models of BV2 and N27 mesencephalic
neurons, and BV2 and N2a neuroblastoma cells.”>®* See Table 6 for details.

Most in vivo and in vitro studies have evaluated the neurotoxic effects of TiO2 NPs in the
cortex, hippocampus, and cerebellum. However, to the best of our knowledge, no studies
have evaluated the neurotoxic effects of TiO2 NPs on other brain regions. The BBB is
effective in protecting the brain from chemical damage. Therefore, there is a need to
understand the effects of TiO2 NPS on the BBB. A previous study exploring the effects of
TiO2 NPs on an in vitro model of BBB established by co-culturing primary human brain
micro vascular endothelial cells (HBMECs) and primary human astrocytes, revealed that
TiO2 NPs increased the permeability of the BBB.”* Another study showed that acute or long-
term exposure of an in vitro model of the BBB established by co-culturing primary rat
endothelial cells and glial cells to TiO2 NPs was associated with BBB dysfunction related to
increased inflammatory response and altered expression of the ABC transporter.”> Moreover,
treatment of T98G human glioblastoma cells with TiO2 NPs was associated with changes in
the transcriptome, suggesting that exposure to TiO2 NPs could compromise BBB integrity
and cause neuroinflammation.”® Furthermore, TiO2 NPs can be internalized by dorsal root
ganglion cells (DRG) and cause damage via apoptosis.””® Yu et al showed an association
between the toxic effects of TiO2 NPs on olfactory bulb neuron cells and its pathogenicity to
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neurodegenerative diseases.” Furthermore, exposure to TiO2 NPs was associated with
varying degrees of cytotoxicity to the human cerebral endothelial cell line (HCECs), human
neural stem cell line (hNSCs), and neuroectodermal stem cell line (1C11) models.!?'2 See
Table 7 for details.

Table 6 Overview of the Literature on Neurotoxic Effects of TiO2 NPs in Primary Glial
Cells and Glial Cell Lines

Model System Particle Size Exposure Dose Neurotoxic Effects Ref.
BV2 microglia 20-30 nm 0.1-200 pg/mL Mitochondrial dysfunction, Oxidative stress [28]
30 nm 2.5-120 ppm Oxidative stress, Mitochondrial dysfunction [164]
Primary rat cortical 10, 20 nm 0, 6.25, 12.5, 25, 50, Cell apoptosis, Morphological changes [168]
astrocytes 100 mg/L
50 nm 116 pug/mL Mitochondria damage, Oxidative stress, Autophagy, [167]
Neuroinflammation
Anatase-360 nm 0, 25, 50, 100 mg/kg Mitochondria damage, Oxidative stress [166]
P25-540 nm
Rutile-360 nm
Cé and U373 cells < 50 nm 0, 20 |,Lgfcm2 Oxidative stress, Mitochondrial damage, Cerebral [170]
damage, Neurodegenerative diseases
40-200 nm 0, 2.5, 5, 10, 20, 40 pg;‘cm2 Inhibited cell proliferation, Morphological changes, [169]
Decreased immuno-location of F-actin fibers, Cell
apoptosis
Primary microglia and 20 nm 0, 0.25, 0.5 mg/mL Neuroinflammation [171]
PCI2 cells
BV2 microglia and N27 <330 nm 2.5-120 ppm Promoted inflammation, Cell apoptosis, Altered cell [172]
mesencephalic neurons cycle, Decreased energy metabolism
Human astrocytoma 69.3 £ 0.4 nm 0, 15, 31, 125 pg/mL Disturbed cell cycle, Membrane damage, Mitochondrial | [162]
cells-D384 and SH-SY5Y dysfunction
cells
BV2-N2a, ALT-N2a, ALT- | 44.4 £ 0.2 nm 0, 5, 30, 100 pg/mL Decreased cell viability, Oxidative stress, Promoted [173]
BV2 co-culture inflammation

Note: The reported particle size reflects the diameter of primary particles.

Factors Influencing the Neurotoxic Potential of TiO2 NPs

The neurotoxic effects of TiO2 NPs are influenced by various factors. The exposure
characteristics, such as exposure dose, method, duration, and species, can influence the toxic
effects of TiO2 NPs in vivo. A review of the literature showed that the exposure dose in vivo
and in vitro experiments was larger than the actual exposure dose of the population.
According to a previous study, the levels of TiO2 NPs in air and water ranged from 0.7 to 16
ng/L.182 It is estimated that children have an intake of TiO2 NPs of about 2—-3 mg/kg/day,
while adults have a TiO2 NPs intake of about 1 mg/kg/day.2 Human exposure to TiO2 NPs is
mainly through dietary intake and air inhalation. Although the exposure methods selected in
animal studies attempted to mimic human exposure closely, there are some gaps. For
example, the system for intranasal administration is simple compared to inhalation
administration. Furthermore, intranasal administration is significantly affected by the
inhalational dose.!®® The intranasal administration volumes in rodents at a given time should
be limited to approximately 5 pL per nostril since volumes greater than this are likely to
become wasted.!**!% Furthermore, ingested TiO2 NPs first interacts with the oral mucosa.
However, intragastric administration does not interact with the oral mucosa and is thus
associated with significant differences in absorption, bioavailability, and metabolism with
implications for assumptions and models of toxicity kinetics.!®® In addition, the exposure
period and duration also influence the neurotoxic effects of TiO2 NPs.!?”-1%® However, the
exposure duration in experiments tends to be shorter than that in humans. Species differences
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are often unavoidable. Therefore, there is a need to conduct epidemiological studies exploring
the neurotoxic effects of TiO2 NPs on humans.
Furthermore, the physical and chemical properties of TiO2 NPs can affect their neurotoxicity.

Particle size is key. In general, small particles are more likely to be absorbed and thus exert
toxic effects.'” According to some previous studies, the neurotoxic effects of TiO2 NPs
depend on particle size.110,120 The hydrodynamic diameter or secondary particle sizes of
TiO2 NPs are important with respect to neurotoxicity. While smaller NPs may seem more
neurotoxic, they are also more likely to clump together and form aggregates.121
Theoretically, the particle aggregation would increase the effective particle size thus reducing
the neurotoxic potential. Several studies have used dynamic light scattering (DLS) to
determine the effects of hydrodynamics or secondary particle size of TiO2 NPs on
neurotoxicity. However, no studies have explored the effect of aggregate particle size on the
neurotoxicity of TiO2 NPs. The zeta potential of TiO2 NPs has also been investigated in most
neurotoxicological studies. Since most cell membranes are negatively charged, the zeta
potential affects the tendency of NPs to penetrate the membrane, with cationic particles
generally exhibiting higher toxicity associated with cell wall damage.187 Furthermore, the
surface charge of the nanoparticles can determine the degree of aggregation.122,123,124
However, further studies are needed to investigate whether the zeta potential affects the
neurotoxicity of TiO2 NPs. In addition, the toxicity of TiO2 NPs is dependent on crystalline
phases. The anatase form of TiO2 NPs is more neurotoxic than that of rutile TiO2 NPs and
P25 TiO2 NPs since anatase has a higher ability to induce oxidative stress.125,126, 127
Taken together, various factors can affect the neurotoxic potential of TiO2 NPs, including
physical and chemical properties of TiO2 NPs, and exposure dose, exposure duration,
exposed species. However, the specific effects of these factors on the neurotoxic effects of
TiO2 NPs still need to be systematically compared.

Reflections on Neurotoxicity Induced by TiO2 NPs

Most studies to date have focused on rodents, and most experimental exposures used are not
very realistic for human exposure. In addition, there is currently limited information on the
levels of TiO2 NPs in the environment, consumer goods, and food products. For humans,
more accurate monitoring is needed to determine daily exposure levels, particle
characteristics and exposure route, all of which affect the neurotoxic potential of TiO2 NPs.
Evaluating and availing data on TiO2 NPs levels in different environmental media helps to
reliably estimate human exposure and thus assess the risk of TiO2 NPs. Furthermore, the
degree of uptake through the digestive system, respiratory system, potential BBB crossing,
and potential translocation to or even accumulation in nervous system should be further
investigated. This information will indicate which route of exposure mitigation is most
valuable for human health protection. However, apart from the recommended exposure limits
(REL) established by the National Institute for Occupational Safety and Health (NIOSH), no
other regulatory agencies have set occupational or environmental exposure limits for TiO2
NPs.9 There are limitations in the monitoring methods of TiO2 NPs. There is an urgent need
to develop appropriate methods for reducing TiO2 NPs in environmental media and food to
prevent their potentially harmful health effects.128
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The specific mechanisms behind the neurotoxic effects of TiO2 NPs have only been explored
through animal and cell experiments. TiO2 NPs increase the formation of reactive oxygen
species (ROS) in the brain, thus inducing oxidative stress. Ze et al reported that TiO2 NPs
induced oxidative stress thus causing brain damage through over activation of the p38-Nrf-2
signaling pathway.78 Oxidative stress can induce neuro inflammation, thus further
aggravating cell damage.129,130,131 Cell damage, including structural and functional
damage, is associated with increased onset and development of neuro developmental or
neurodegenerative diseases, such as autism spectrum disorder (ASD) and PD.87,100 Cell
damage is also linked to behavioral deficits.132,143 Abnormal motor ability could be caused
by a decrease in the axon length of motor neurons.144 In addition, changes in hippocampal
synaptic plasticity could lead to decreased spatial recognition.145 The development of axons,
dendrites and synapses is regulated by various signaling pathways. TiO2 NPs impair the
growth of axons and dendrites through excessive activation of the ERK1/2/MAPK signaling
pathway.146 In addition, impairment of dendritic growth by TiO2 NPs is also related to
inhibition of the Wnt/B-catenin signaling pathway.147 Moreover, suppression of the neuronal
synaptic outgrowth by TiO2 NPs is linked to the inhibition of the BDNF-TrkB signaling
pathway.147-148 Furthermore, the accumulation of TiO2 NPs in the brain could cause
alterations in brain biochemistry and changes in neurotransmitter levels, contributing to
behavioral changes.149-160,161-168 Although all of these studies confirm that TiO2 NPs
cause neurotoxic effects through different mechanisms, most of the evidence on the
neurotoxic effects of TiO2 NPs is fragmentary and is obtained from different species.
Furthermore, few of these mechanism studies have explored whether the neurotoxic effects of
TiO2 NPs are mediated through synergistic interactions of multiple brain regions, organs, and
systems. Whether TiO2 NPs with different characteristics cause different degrees of toxic
effects through different mechanisms remains be further explored. Extensive systematic
studies are needed to fully elucidate the neurotoxic mechanisms of TiO2 NPs, which will be
helpful for the prevention and treatment of neurotoxic effects of TiO2 NPs.

Conclusion

Animals and humans can be exposed to TiO2 NPs through different exposure pathways, thus
posing health hazards. At present, the neurotoxic effects of TiO2 NPs have only been
evaluated through animal models, including rats, mice, and zebra fish, and cell studies,
including primary neurons, PC12, and SH-SYS5Y cell lines. TiO2 NPs can induce oxidative
stress, promote neuro inflammation, alter brain biochemistry, or damage neurons. Neuronal
damage can further lead to various behavioral disorders and is closely associated with
increased onset and development of neuro developmental or neurodegenerative diseases.
However, due to the lack of relevant epidemiological studies, whether TiO2 NPs are linked to
neuro developmental or neurodegenerative diseases in humans remains unknown.
Furthermore, the neurotoxic potential of TiO2 NPs can be affected by various factors. There
is a need for researchers to understand the neurotoxic effects of TiO2 NPs on humans and
develop strategies for mitigating the effects of TiO2 NPs on human health.
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