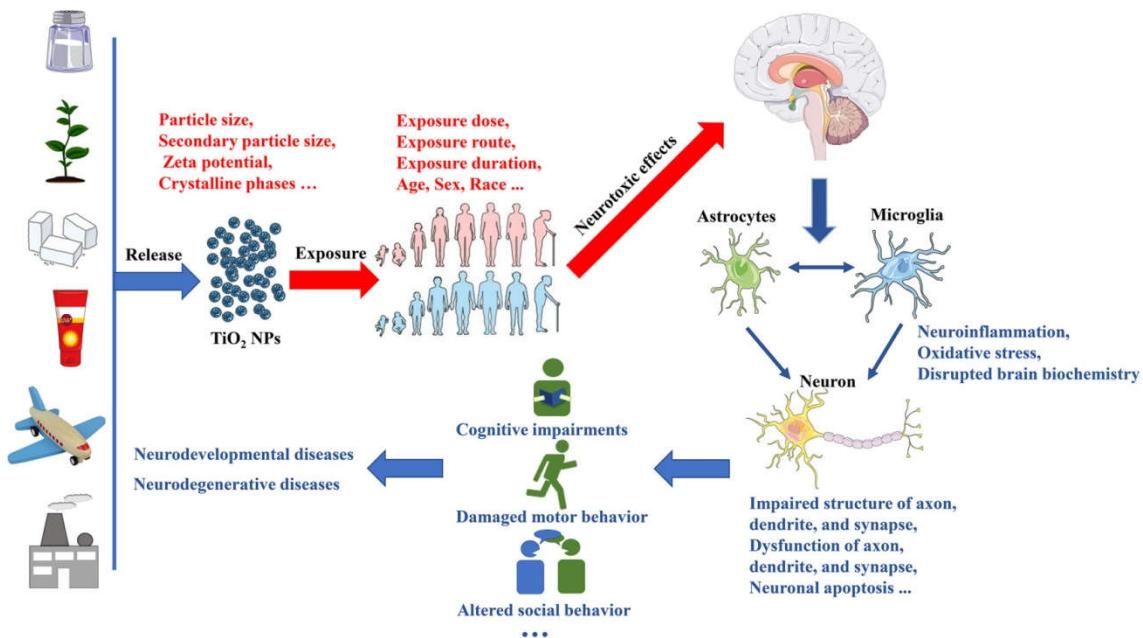


An overview: Neurotoxicity of Titanium Dioxide Nanoparticles induced cognitive impairment in adult zebra fish by focusing on Nrf-2 and Ho-1 signaling


**Renu Das¹, Teenam², Dr.Dheeraj Ahirwar³, Dr.Manisha Masih Singh⁴,
Sharon⁵ Purnima Baghel⁶**

***¹⁻⁶School of Pharmacy, Chouksey Engineering College, Bilaspur, (C.G.),
495004***

Abstract:

The growing use of titanium dioxide nanoparticles (TiO₂ NPs) across miscellaneous fields has surpassed to a growing concern concerning their referring to practices or policies that do not negatively affect the environment adulteration and certain human uncovering. Consequently, significant research works have existed in the direction of understanding the belongings of TiO₂NPs on both persons and the surroundings. Notably, TiO₂ NPs uncovering has happened guide multiple degradations of the central nervous system. This review aims to determine a survey of the recorded neurotoxic effects of TiO₂ NPs indifferent class and artificial models. Following uncovering, TiO₂ NPs can reach the mind, although the particular machine and length of atoms that cross the blood-mind obstacle (BBB) wait hazy. Exposure to TiO₂ NPs has existed shown to encourage oxidative stress, advance Neuroinflammation, upset intelligence biochemistry, and eventually impair neuronal function and makeup. Subsequent neuronal damage can enhance miscellaneous concerned with manner of behaving disorders and play a significant function in the attack and progress of neuro developmental or neurodegenerative afflictions. Moreover, the neurotoxic potential of TiO₂NPs can be affected by miscellaneous determinants, containing uncovering characteristics and the physicochemical characteristics of the TiO₂ NPs. However, a orderly corresponding of the neurotoxic belongings of TiO₂ NPs accompanying different traits under miscellaneous uncovering environments is still wanting. Additionally, our understanding of the underlying neurotoxic methods applied by TiO₂ NPs debris wanting and fragmented. Given these information break, it is authoritative to further search the neurotoxic hazards and risks guide exposure to TiO₂ NPs.

Keywords: TiO₂ NPs, neurotoxic belongings, oxidative stress, neuronal damage, neurotoxic systems.

1. Introduction

Nano-materials (NMs) are fabrics outlined as bearing at least individual measure varying from 1 to 100 nanometers (nm). Titanium dioxide nanoparticles (TiO₂ NPs) rank between the top five NMs used in services crop, in the way that bread additives, toys, cosmetic, photoelectric commodity, and pharmaceuticals (Figure 1).^{1,2} Consequently, the attendance of TiO₂ NPs in air, water, soil, and other incidental television has evenly raised due to their extensive use.³ This increasing request and adulteration have fashioned human and animal exposure to TiO₂ NPs certain. Apart from skin uncovering, breathing, and spoken exposure, additional routes of uncovering to TiO₂ NPs contain intraperitoneal dose, subcutaneous injection, and subcutaneous injection.⁴ Importantly, however the route of uncovering, TiO₂ NPs can eventually enter the fundamental distribution and translocate to differing tissues and tools (Figure 2).⁴ As the accumulation of TiO₂ NPs in the material increases, the mixed well being hazards enhance more severe.⁵

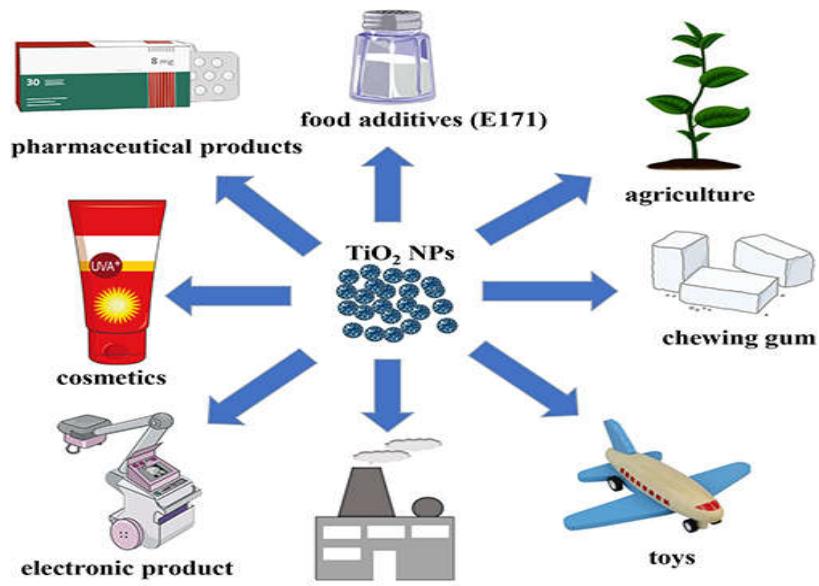
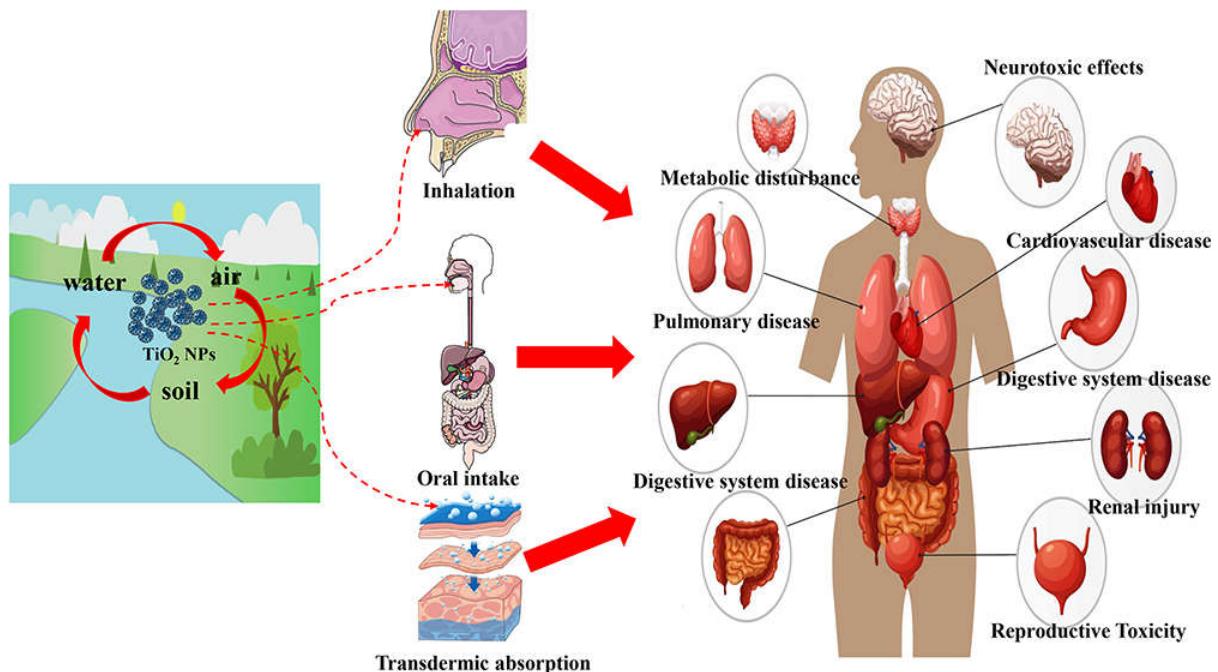



Figure 1 Application of TiO₂ NPs

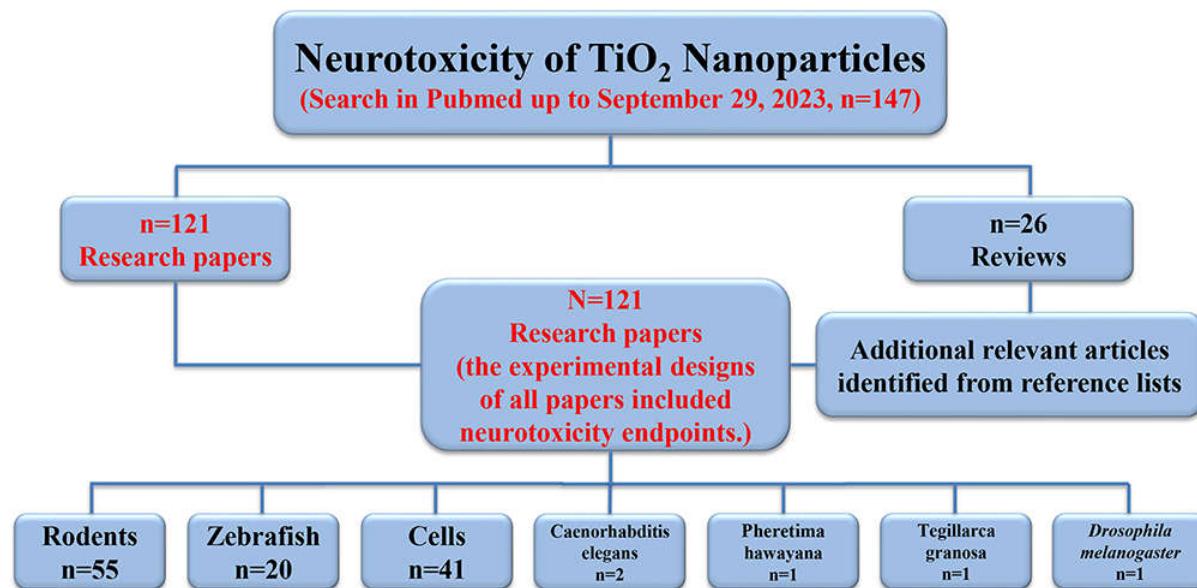
Figure 2 TiO₂ NPs can enter the human body through different ways and accumulate in the body, posing a threat to human health.

Before the rise of nanotechnology, TiO₂ was established in the form of fine atoms (FPs), that were thought-out as poor dissolved and reduced toxicity pieces.⁶ However, few studies have belied this view, to a degree lung tumors in rats unprotected to extreme levels of TiO₂ FPs for two age.⁷ Furthermore, TiO₂ has happened top-secret all at once 2B cancer-causing agent (possibly malignant to persons) for one International Agency for Research on Cancer.⁸ Although the distinguishing carcinogenicity of TiO₂ FPs is still discussed, skilled is certainly that TiO₂ FPs pose a health risk.⁹ Compared to TiO₂ FPs, TiO₂ NPs present more powerful catalytic action and bioactivity on account of their nano scale ranges.⁹ Consequently, the toxicity of TiO₂ NPs cannot be alone implicit from the known toxicology of TiO₂ FPs, nor calm have in mind utilizing normal forms.¹⁰ In current age, extensive investigation of the belongings of TiO₂ NPs uncovering on human strength more indicates the high concern about the security of TiO₂ NPs. In addition to seeing all appropriate uncovering sketches and organic in-between steps, understanding the final poisonous consequence is fault-finding for human well-being risk estimate.¹¹ Results from another teenager cohort study in China determined that Ti can cross the placental obstruction (PB) to harm fetuses that are intensely alert referring to practices or policies that do not negatively affect the environment warnings.¹² Several epidemiological studies have habitual that Ti exposure increases the risk of un favourable beginning consequences, containing affecting animate nerve organs hose defects, preterm beginning, fetal distress, and depressed beginning pressure.¹³⁻¹⁵ Moreover, TiO₂ NP uncovering can have disadvantageous belongings on the health of the society further the embryo. Emerging epidemiological evidence plans that greater levels of urinary or ancestry Ti are guide an increased risk of differing un favourable well-being belongings, containing diabetes and cardiopulmonary disorders (Figure 2).¹⁶⁻¹⁹ In current years, lab studies on the toxicity of TiO₂ NPs have surpassed epidemiological studies. Common animal models to a degree rodent, rats, zebra fish, and *Drosophila* have existed used to study TiO₂ NPs. *In vivo*, studies have proved that TiO₂ NPs uncovering can be linked to body part redness, pneumoconiosis or anthracosis, heart failure, generative toxicity, retinal

deteriorations, etc.²⁰⁻²⁴ In vitro, studies have further supported these poisonous belongings of TiO₂ NPs.²⁵⁻²⁸ Given that nanoparticles can record the intelligence, concerns concerning their neurotoxic belongings, including those of TiO₂ NPs, have acquire meaningful consideration.²⁹

The entry of TiO₂ NPs into the brain mainly occurs through the blood-brain barrier (BBB), via absorption-mediated transversion or intranasal pathways.³⁰⁻³¹ However, the mechanisms by which nano-titanium dioxide penetrates and targets different brain regions remain unknown. The degree of TiO₂ NPs accumulation in each brain region closely correlates with the extent of neurotoxic effects. Common neurotoxic effects include behavior deficits, nervous system dysfunction, and structural changes induced by oxidative stress, autophagy, inflammation, or the activation of specific signaling pathways.³² Although emerging studies support the role of TiO₂ NPs exposure as an environmental risk factor for human health, conscientious and systematic investigations are scarce into the extent of TiO₂ NPs translocation to different brain regions and the resulting damage to the neuronal system in relation to particle dose and particle size. The lack of information on the neurotoxicity of TiO₂ NPs also complicates risk assessment following exposure. Therefore, this paper will mainly focus on current studies concerning the neurotoxicology of TiO₂ NPs, while also reviewing the molecular mechanisms underlying their neurotoxic effects to mitigate potential damage resulting from exposure.³³

2.Evidence from Epidemiological and Human Exposure Studies


In earlier years, population exposure to TiO₂ NPs was primarily investigated among occupational populations. Welding fumes, industrial waste combustion, and mineral mining can all result in environmental contamination by TiO₂ NPs, thereby increasing the exposure risk for workers.³³ Exposure to fumes from metal-inert gas soldering has been found to increase the risk of Parkinson's disease (PD).³⁴ Although these fumes mainly consist of zinc, copper, and iron, Andujar et al discovered an excessive accumulation of Ti in the lung tissue sections of welders in 2014.³⁵ Industrial waste, pesticides, and automobile exhaust are common sources of environmental pollutants associated with neurotoxic effects.³⁶ Among various environmental pollutants, NPs can easily penetrate the BBB and induce neurotoxicity by activating innate immune responses in astrocytes, microglia, and neurons.³⁶ TiO₂ NPs are a major component among environmental pollutants, with up to 760 tons of TiO₂ NPs being released into the soil through sewage and sludge each year.^{37,38} Currently, there is no direct evidence of neurotoxic effects caused by TiO₂ NPs exposure in mineral miners, but a previous study suggested a significantly increased inflammatory response in mineral miners exposed to TiO₂ NPs.³⁹ It is well known that the occurrence of inflammatory reactions in other organs is closely related to nervous system damage.⁴⁰ With the increasing application of TiO₂ NPs, concerns have also arisen regarding the neurotoxic effects of non-occupational populations exposed to TiO₂ NPs. A recent cohort study demonstrated that high levels of urinary Ti during pregnancy were significantly associated with impaired language

development, suggesting that TiO_2 NPs might act as developmental neurotoxicants.⁴¹ Furthermore, elevated levels of Ti in maternal hair were also significantly associated with an increased risk of neural tube defects.⁴² However, epidemiological studies on the neurotoxic effects caused by TiO_2 NPs are still limited. Currently, laboratory studies are the main basis for evaluating the neurotoxicity of TiO_2 NPs.

3.Data Search

A review of the neurotoxic potential of TiO_2 NPs was performed by a literature search of the PubMed database from 2021 to October 10, 2025 using combinations of the following keywords: Titanium dioxide nanoparticles exposure; E171 exposure; Titanium dioxide nanoparticles neuron; Titanium dioxide nanoparticles brain; Titanium dioxide nanoparticles behavior; and Titanium dioxide nanoparticles neurotoxicology. We used a two-step approach: initial screening of all titles and abstracts followed by full-text review of pertinent review articles, with one hundred forty-seven papers selected, including one hundred twenty-one research papers, and citations within twenty-six reviews screened for additional studies not identified in the electronic search, but no additional research papers were found through these references.

We identified studies that had administered TiO_2 NPs to the organism in vitro or in vivo for experimental research; the organism groups studied primarily consisted of rodents, zebra fish, and cells, with fifty-five studies done on rodents, twenty on zebra fish, two on *Caenorhabditis elegans* (*C. elegans*), one on each of *Pheretima hawaiiensis*, *Tegillarca granosa*, and *Drosophila melanogaster*, and forty-one using in vitro cells, including animal and human-derived neuronal cells (Figure 3).⁴³

Figure 3 Study selection flow diagram. The flow chart illustrates the number of citations and resources that underwent screening, exclusion, and/or inclusion in the review.

4.Neurotoxic Effects of TiO₂ NPs in Zebra fish

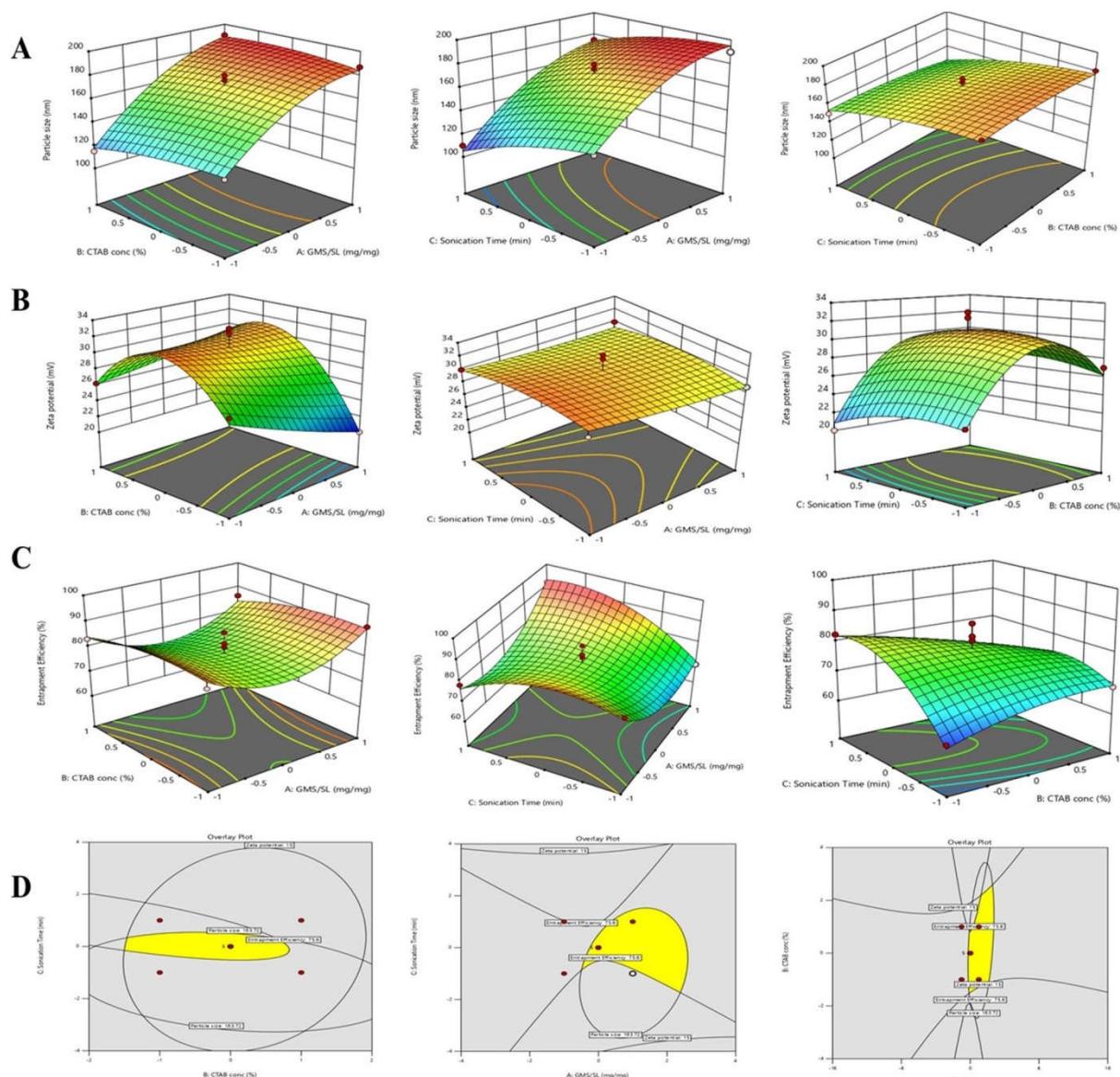
Zebrafish (*Danio rerio*) is commonly used as in vivo model system for studying the toxicity of nanomaterials due to its low cost, rapid growth, and significant homology to humans.⁴⁴ A total of 20 studies have investigated the neurotoxic effects of TiO₂ NPs in zebrafish, with 11 of them examining co-exposure to other compounds (Table 3). Among the 11 studies, 8 studies selected the embryonic stage of zebrafish for TiO₂ NPs exposure, 2 studies selected adult zebrafish, and one study selected zebrafish larvae. The most commonly used dose of TiO₂ NPs in studies involving co-exposure to other compounds was 100 µg/L. So far, TiO₂ NPs have been shown to enhance Pb,^{106,107} decabromodiphenyl oxide (BDE209),¹⁰⁸ cypermethrin,¹⁰⁹ triphenyl phosphate,¹¹⁰ bisphenol A,^{111,112} difenoconazole,¹¹³ tetracycline,¹¹⁴ and microcystinLR¹¹⁵ -induced neurotoxicity. TiO₂ NPs mainly enhance the neurotoxicity of these compounds by increasing their bio concentration and bioavailability in zebrafish. Interestingly, co-exposure with TiO₂ NPs did not alter pentachlorophenol-induced neurotoxicity.⁴⁵ Exposure to TiO₂ NPs alone is also able to induce a variety of neurotoxic effects in zebrafish. The embryonic stage of zebrafish is the most commonly used exposure stage for TiO₂ NPs exposure models, which may be attributed to the incomplete development of the BBB during this period.⁴⁶ TiO₂ NPs exposure during the embryonic stage of zebrafish significantly alters motor behavior, social behavior, and spatial recognition memory.⁴⁷⁻⁵⁰ In addition to behavioral impairments, TiO₂ NPs exposure causes oxidative stress, promotes neuronal proliferation, decreases motor neuron axon length, alters gene expression, and increases cell apoptosis.⁵¹⁻⁵⁴ Two study chose the adult stage of zebrafish for TiO₂ NPs exposure, and their results suggested that TiO₂ NPs exposure caused cognitive deficit, promoted neuroinflammation, and altered biochemical constituents of the brain.⁵⁵⁻⁵⁶

Model System	Particle Size	Exposure Dose	Neurotoxic Effects	Ref.
Zebrafish embryos	5 nm	0, 100 µg/L	Enhanced Pb-induced neurotoxicity	[106]
	5 nm	0, 100 µg/L	Enhanced BPA-induced neurotoxicity	[111]
	5–10 nm	0, 100 µg/L	Enhanced DIF-induced neurotoxicity	[113]
	7.04 nm	0, 100 µg/L	Enhanced Pb-induced neurotoxicity	[107]
	7.04 nm	0, 100 µg/L	Enhanced BDE-209-induced neurotoxicity	[108]
	7.04 nm	0, 1 mg/L	Enhanced CYP-induced neurotoxicity	[109]
	100, 300 nm	0, 100 µg/L	Enhanced TPhP-induced neurotoxicity	[110]
	25 nm	0, 100 µg/L	No changed PCP-induced neurotoxicity	[116]
	6.5 nm	0, 5, 10, 20, 40 µg/L	Decreased spatial recognition memory, Altered biochemical constituents of the brain, Over proliferation of glial cells, Cell apoptosis	[117]
	7.04 nm	0, 0.1 mg/L	Altered motor and social behaviors, Cell apoptosis, Oxidative stress, Promoted neuronal proliferation	[118]
	14.1 ± 0.6 nm	0, 0.1, 1 mg/L	Altered motor and social behaviors, Cell apoptosis, Oxidative stress	[119]
	21 nm	0, 0.01, 0.1, 1.0 mg/L	Altered motor behavior, Decreased CNS neurogenesis, Decreased motor neuron axon length, Altered gene expression	[120]
Zebrafish larvae	30 nm	0, 100 µg/L	Cell apoptosis	[121]
	33.4 ± 1.9 nm	0, 0.1, 1, 10 µg/mL	Oxidative stress, Loss of DA secretion, Altered gene expression	[122]
	50 nm	0.1 mg/mL	Oxidative stress	[123]
	/	0.5 mg/L	Enhanced TC-induced neurotoxicity	[114]
	5 nm	0, 100 µg/L	Enhanced BPA-induced neurotoxicity	[112]
Adult zebrafish	26.98 ± 0.85 nm	0, 100 µg/L	Enhanced MCLR-induced neurotoxicity	[115]
	20 nm	0, 10, 100 ppm	Altered biochemical constituents of the brain	[124]
	/	10 µg/mL	Caused cognitive deficit, Caused neuroinflammatory	[125]

Note: The reported particle size reflects the diameter of primary particles.

Table 1. Overview of Literature Investigating Neurotoxic Effects of TiO₂ NPs in Zebra fish

Result


Neurotoxic Effects of TiO₂ NPs in vitro Models

In vitro models are widely used to assess neurotoxic effects on cellular functions.⁵⁷ Several studies have evaluated the neurotoxic effects of TiO₂ NPs using in vitro models. Primary hippocampal and cortical neurons are widely used in vitro models for neurotoxicology testing as they are easily polarized and form unique axons and dendrites. In addition, these models are used to study neuronal polarization, axon/dendrite morphology, synaptic formation, and central nervous system (CNS) functions.⁵⁸ Exposure to TiO₂ NPs impairs neuronal function, inhibits neuroblast proliferation, reduces cell viability, and increases cell apoptosis by promoting oxidative stress in both primary hippocampal and cortical neurons.⁵⁹⁻⁶⁴ Furthermore, TiO₂ NPs inhibit neurite outgrowth of hippocampal neurons by interfering with glutamate metabolism and impairing N-methyl-D-aspartic acid (NMDA) receptor function.⁶⁵ According to some previous studies, the suppression of axonal development, dendritic development, and synapse development by TiO₂ NPs was associated with decreased expression of axon growth-related factors and inhibition of the Wnt/β-catenin and BDNF-TrkB pathways.⁶⁶⁻⁶⁸ See Table 5 for details.

Rat pheochromocytoma (PC12) cell line and human SH-SY5Y neuroblastoma cell line have been used as models for neurotoxicity testing of TiO₂ NPs (Table 5). PC12 cell line shows morphological and functional differentiation similar to sympathetic neurons. PC12 cell line is a suitable model for studying the chemical disruption of neuronal differentiation, synthesis, storage, and release of neurotransmitters, function and regulation of ion channels, and the interaction of compounds with membrane-bound receptors.⁶⁹ A previous study revealed that treatment of PC12 cells with TiO₂ NPs (< 36 nm, < 200 µg/mL) decreased cell viability, increased cell apoptosis via oxidative stress, inhibited the neurite outgrowth, disturbed cell cycle, and disrupted the ubiquitin-proteasome system.⁷⁰⁻⁷² The human-derived SH-SY5Y cell line is preferred over the PC12 cell line as it avoids interspecific differences in chemical action.¹⁶¹ The SH-SY5Y cell line is an excellent model for studying toxicity on proliferating or differentiated cells because it can be maintained as neuroblasts or induced to differentiate into more neuron-like morphologies.⁷³ TiO₂ NPs were shown to cause endoplasmic reticulum (ER) stress, autophagy, inhibition of cell proliferation, disturbance of the microtubule dynamics, and membrane damage in SH-SY5Y cells.⁷⁴⁻⁷⁹ Several in vivo studies investigated the neurotoxic effects of TiO₂ NPs on mouse hippocampus. However, one in vitro study explored the neurotoxic effects of TiO₂ NPs on mouse hippocampal neuronal HT22 cells. The study revealed that TiO₂ NPs increased apoptosis of HT22 cells via oxidative stress- and calcium imbalance-mediated ER stress.⁸⁰

Acute or prolonged exposure to TiO₂ NPs is associated with toxic effects on neuronal and glial cells.⁸¹ Glial cells are critical cells of the nervous system, which serve as tissue-resident macrophages. Microglia are crucial regulators that influence nervous system development, maintenance of the neural environment, and response to injury and repair.⁸² The immortalized mouse microglia cell line BV2 is often used as an alternative for primary microglia in cell experiments. Some previous studies showed that exposure of BV2 cells to TiO₂ NPs was associated with mitochondrial dysfunction and increased oxidative stress.⁸³⁻⁸⁴ Astrocytes play a key role in innate and adaptive immune responses in CNS injury.⁸⁵ Due to advancements in cell culture technology, primary astrocytes have become a common primary cell model. Previous studies revealed that TiO₂ NPs induced mitochondria damage, oxidative stress, autophagy, neuro inflammation, and cell apoptosis in primary rat cortical astrocytes.⁸⁶⁻⁸⁸

Other studies employed human glial cell lines as in vitro models for neurotoxicity studies to eliminate species differences. Some previous studies revealed that TiO₂ NPs

Fig.1A Responsesurfaceplotforeffectofallindependentvariablesonvesiclesize. **B** Zetapotential. **C** Entrapmentefficiency. **D** Overlaypl

Model System	Particle Size	Exposure Dose	Neurotoxic Effects	Ref.
Primary hippocampal rat neurons	5.5 nm	0, 5, 15, 30 $\mu\text{g/mL}$	Decreased cell viability, Increased levels of LDH, Cell apoptosis	[139]
	5.5 nm	0, 5, 15, 30 $\mu\text{g/mL}$	Inhibited neurite outgrowth by interfering with glutamate metabolism, Impaired NMDA receptor function	[145]
	5.5 nm	0, 1.25, 2.5, 5 $\mu\text{g/mL}$	Inhibited dendritic development, Inhibition of the Wnt/ β -catenin pathway	[147]
	36.83 nm	0, 5, 15, 30 $\mu\text{g/mL}$	Inhibited axonal development	[146]
	/	0, 5, 15, 30 g/mL	Inhibited synapse development, Inhibition of the BDNF-TrkB pathway	[148]
	26.2 \pm 10.7 nm	0, 30, 100 $\mu\text{g/mL}$	Limited hazard for neuronal function	[140]
	6–142 nm	0, 3.1, 6.3, 12.5, 50 $\mu\text{g/mL}$	Decreased cell viability	[141]
	200–700 nm	0, 5, 10, 15, 20 $\mu\text{g/mL}$	Decreased proliferation of neuroblasts	[142]
	20–80 nm	20, 50 mg/cm^2	Oxidative stress	[144]
	< 100 nm	0.01–300 $\mu\text{g/cm}^2$	Oxidative stress	[143]
PC12 cells	20–50 nm	0, 10, 50, 100 $\mu\text{g/mL}$	Oxidative stress	[149]
	< 25 nm	0, 50, 100, 200 $\mu\text{g/mL}$	Cell apoptosis	[150]
	< 36 nm	0, 0.01, 0.1, 1, 10, 100 $\mu\text{g/mL}$	Oxidative stress, Dysfunction of the ubiquitin-proteasome system, α -Syn aggregation	[151]
	Anatase-20 nm	0, 25, 50, 100, 200 $\mu\text{g/mL}$	Inhibited the neurite outgrowth	[152]
	Rutile-20 nm		Decreased cell viability, Increased levels of LDH, Oxidative stress, Cell apoptosis, Disturbed cell cycle, Altered gene expression	
	Micro-1000 nm			
	5 nm	0, 5, 10, 50, 100 $\mu\text{g/mL}$	Cell apoptosis, Oxidative stress, ER stress	[153]
	20 nm	0, 2, 10, 50, 100 $\mu\text{g/mL}$	Disturbed cell cycle, Oxidative stress, Membrane damage, Autophagy	[154]
	25 nm	0, 80, 120, 150 $\mu\text{g/mL}$	Disturbed cell cycle	[155]
	100–150 nm	0, 100 $\mu\text{g/mL}$	Altered cellular morphology, Disturbed the microtubule dynamics	[156]
SH-SY5Y cells	115.73 \pm 0.67 nm	0.75–75 $\mu\text{g/mL}$	Inhibited cell proliferation	[157]
	/	0, 5, 10, 20, 40, 80, 160 $\mu\text{g/mL}$	Decreased cell viability, Increased levels of LDH, Promoted inflammation	[158]
	50 nm	0, 50, 100, 200 $\mu\text{g/mL}$	Cell apoptosis, Oxidative stress, ER stress	[159]
HT22 cells				

Note: The reported particle size reflects the diameter of primary particles.

Table 5 Overview of the Literature on Neurotoxic Effects of TiO₂ NPs on Primary Neuron and Nerve Cell Lines

inhibited cell proliferation, induced morphological changes, decreased immuno-location of F-actin fibers, and increased cell apoptosis in U374 cells.^{89–90} Furthermore, several studies have investigated the neurotoxic effects of TiO₂ NPs in a co-culture of glial cells and other cells. For example, Yang et al showed that TiO₂ NPs stimulate the inflammatory reaction in brain microglia and damage neuron using a co-culture model of primary microglia and PC12 cell line.⁹¹ Similarly, TiO₂ NPs was shown to stimulate the inflammatory reaction in brain microglia and damage neurons in co- culture models of BV2 and N27 mesencephalic neurons, and BV2 and N2a neuroblastoma cells.^{92–93} See Table 6 for details.

Most in vivo and in vitro studies have evaluated the neurotoxic effects of TiO₂ NPs in the cortex, hippocampus, and cerebellum. However, to the best of our knowledge, no studies have evaluated the neurotoxic effects of TiO₂ NPs on other brain regions. The BBB is effective in protecting the brain from chemical damage. Therefore, there is a need to understand the effects of TiO₂ NPs on the BBB. A previous study exploring the effects of TiO₂ NPs on an in vitro model of BBB established by co-culturing primary human brain micro vascular endothelial cells (HBMECs) and primary human astrocytes, revealed that TiO₂ NPs increased the permeability of the BBB.⁹⁴ Another study showed that acute or long-term exposure of an in vitro model of the BBB established by co-culturing primary rat endothelial cells and glial cells to TiO₂ NPs was associated with BBB dysfunction related to increased inflammatory response and altered expression of the ABC transporter.⁹⁵ Moreover, treatment of T98G human glioblastoma cells with TiO₂ NPs was associated with changes in the transcriptome, suggesting that exposure to TiO₂ NPs could compromise BBB integrity and cause neuroinflammation.⁹⁶ Furthermore, TiO₂ NPs can be internalized by dorsal root ganglion cells (DRG) and cause damage via apoptosis.^{97–98} Yu et al showed an association between the toxic effects of TiO₂ NPs on olfactory bulb neuron cells and its pathogenicity to

neurodegenerative diseases.⁹⁹ Furthermore, exposure to TiO₂ NPs was associated with varying degrees of cytotoxicity to the human cerebral endothelial cell line (HCECs), human neural stem cell line (hNSCs), and neuroectodermal stem cell line (1C11) models.¹⁰⁰⁻¹⁰² See Table 7 for details.

Table 6 Overview of the Literature on Neurotoxic Effects of TiO₂ NPs in Primary Glial Cells and Glial Cell Lines

Model System	Particle Size	Exposure Dose	Neurotoxic Effects	Ref.
BV2 microglia	20–30 nm	0.1–200 µg/mL	Mitochondrial dysfunction, Oxidative stress	[28]
	30 nm	2.5–120 ppm	Oxidative stress, Mitochondrial dysfunction	[164]
Primary rat cortical astrocytes	10, 20 nm	0, 6.25, 12.5, 25, 50, 100 µg/mL	Cell apoptosis, Morphological changes	[168]
	50 nm	116 µg/mL	Mitochondria damage, Oxidative stress, Autophagy, Neuroinflammation	[167]
	Anatase-360 nm	0, 25, 50, 100 mg/kg	Mitochondria damage, Oxidative stress	[166]
	P25-540 nm			
	Rutile-360 nm			
C6 and U373 cells	< 50 nm	0, 20 µg/cm ²	Oxidative stress, Mitochondrial damage, Cerebral damage, Neurodegenerative diseases	[170]
	40–200 nm	0, 2.5, 5, 10, 20, 40 µg/cm ²	Inhibited cell proliferation, Morphological changes, Decreased immuno-location of F-actin fibers, Cell apoptosis	[169]
Primary microglia and PC12 cells	20 nm	0, 0.25, 0.5 mg/mL	Neuroinflammation	[171]
BV2 microglia and N27 mesencephalic neurons	< 330 nm	2.5–120 ppm	Promoted inflammation, Cell apoptosis, Altered cell cycle, Decreased energy metabolism	[172]
Human astrocytoma cells-D384 and SH-SY5Y cells	69.3 ± 0.4 nm	0, 15, 31, 125 µg/mL	Disturbed cell cycle, Membrane damage, Mitochondrial dysfunction	[162]
BV2-N2a, ALT-N2a, ALT-BV2 co-culture	44.4 ± 0.2 nm	0, 5, 30, 100 µg/mL	Decreased cell viability, Oxidative stress, Promoted inflammation	[173]

Note: The reported particle size reflects the diameter of primary particles.

Factors Influencing the Neurotoxic Potential of TiO₂ NPs

The neurotoxic effects of TiO₂ NPs are influenced by various factors. The exposure characteristics, such as exposure dose, method, duration, and species, can influence the toxic effects of TiO₂ NPs *in vivo*. A review of the literature showed that the exposure dose *in vivo* and *in vitro* experiments was larger than the actual exposure dose of the population. According to a previous study, the levels of TiO₂ NPs in air and water ranged from 0.7 to 16 µg/L.¹⁸² It is estimated that children have an intake of TiO₂ NPs of about 2–3 mg/kg/day, while adults have a TiO₂ NPs intake of about 1 mg/kg/day.² Human exposure to TiO₂ NPs is mainly through dietary intake and air inhalation. Although the exposure methods selected in animal studies attempted to mimic human exposure closely, there are some gaps. For example, the system for intranasal administration is simple compared to inhalation administration. Furthermore, intranasal administration is significantly affected by the inhalational dose.¹⁰³ The intranasal administration volumes in rodents at a given time should be limited to approximately 5 µL per nostril since volumes greater than this are likely to become wasted.^{104,105} Furthermore, ingested TiO₂ NPs first interacts with the oral mucosa. However, intragastric administration does not interact with the oral mucosa and is thus associated with significant differences in absorption, bioavailability, and metabolism with implications for assumptions and models of toxicity kinetics.¹⁰⁶ In addition, the exposure period and duration also influence the neurotoxic effects of TiO₂ NPs.¹⁰⁷⁻¹⁰⁸ However, the exposure duration in experiments tends to be shorter than that in humans. Species differences

are often unavoidable. Therefore, there is a need to conduct epidemiological studies exploring the neurotoxic effects of TiO₂ NPs on humans.

Furthermore, the physical and chemical properties of TiO₂ NPs can affect their neurotoxicity. Particle size is key. In general, small particles are more likely to be absorbed and thus exert toxic effects.¹⁰⁹ According to some previous studies, the neurotoxic effects of TiO₂ NPs depend on particle size.^{110,120} The hydrodynamic diameter or secondary particle sizes of TiO₂ NPs are important with respect to neurotoxicity. While smaller NPs may seem more neurotoxic, they are also more likely to clump together and form aggregates.¹²¹ Theoretically, the particle aggregation would increase the effective particle size thus reducing the neurotoxic potential. Several studies have used dynamic light scattering (DLS) to determine the effects of hydrodynamics or secondary particle size of TiO₂ NPs on neurotoxicity. However, no studies have explored the effect of aggregate particle size on the neurotoxicity of TiO₂ NPs. The zeta potential of TiO₂ NPs has also been investigated in most neurotoxicological studies. Since most cell membranes are negatively charged, the zeta potential affects the tendency of NPs to penetrate the membrane, with cationic particles generally exhibiting higher toxicity associated with cell wall damage.¹⁸⁷ Furthermore, the surface charge of the nanoparticles can determine the degree of aggregation.^{122,123,124} However, further studies are needed to investigate whether the zeta potential affects the neurotoxicity of TiO₂ NPs. In addition, the toxicity of TiO₂ NPs is dependent on crystalline phases. The anatase form of TiO₂ NPs is more neurotoxic than that of rutile TiO₂ NPs and P25 TiO₂ NPs since anatase has a higher ability to induce oxidative stress.^{125,126, 127} Taken together, various factors can affect the neurotoxic potential of TiO₂ NPs, including physical and chemical properties of TiO₂ NPs, and exposure dose, exposure duration, exposed species. However, the specific effects of these factors on the neurotoxic effects of TiO₂ NPs still need to be systematically compared.

Reflections on Neurotoxicity Induced by TiO₂ NPs

Most studies to date have focused on rodents, and most experimental exposures used are not very realistic for human exposure. In addition, there is currently limited information on the levels of TiO₂ NPs in the environment, consumer goods, and food products. For humans, more accurate monitoring is needed to determine daily exposure levels, particle characteristics and exposure route, all of which affect the neurotoxic potential of TiO₂ NPs. Evaluating and availing data on TiO₂ NPs levels in different environmental media helps to reliably estimate human exposure and thus assess the risk of TiO₂ NPs. Furthermore, the degree of uptake through the digestive system, respiratory system, potential BBB crossing, and potential translocation to or even accumulation in nervous system should be further investigated. This information will indicate which route of exposure mitigation is most valuable for human health protection. However, apart from the recommended exposure limits (REL) established by the National Institute for Occupational Safety and Health (NIOSH), no other regulatory agencies have set occupational or environmental exposure limits for TiO₂ NPs.⁹ There are limitations in the monitoring methods of TiO₂ NPs. There is an urgent need to develop appropriate methods for reducing TiO₂ NPs in environmental media and food to prevent their potentially harmful health effects.¹²⁸

The specific mechanisms behind the neurotoxic effects of TiO₂ NPs have only been explored through animal and cell experiments. TiO₂ NPs increase the formation of reactive oxygen species (ROS) in the brain, thus inducing oxidative stress. Ze et al reported that TiO₂ NPs induced oxidative stress thus causing brain damage through over activation of the p38-Nrf-2 signaling pathway.⁷⁸ Oxidative stress can induce neuro inflammation, thus further aggravating cell damage.^{129,130,131} Cell damage, including structural and functional damage, is associated with increased onset and development of neuro developmental or neurodegenerative diseases, such as autism spectrum disorder (ASD) and PD.^{87,100} Cell damage is also linked to behavioral deficits.^{132,143} Abnormal motor ability could be caused by a decrease in the axon length of motor neurons.¹⁴⁴ In addition, changes in hippocampal synaptic plasticity could lead to decreased spatial recognition.¹⁴⁵ The development of axons, dendrites and synapses is regulated by various signaling pathways. TiO₂ NPs impair the growth of axons and dendrites through excessive activation of the ERK1/2/MAPK signaling pathway.¹⁴⁶ In addition, impairment of dendritic growth by TiO₂ NPs is also related to inhibition of the Wnt/β-catenin signaling pathway.¹⁴⁷ Moreover, suppression of the neuronal synaptic outgrowth by TiO₂ NPs is linked to the inhibition of the BDNF-TrkB signaling pathway.¹⁴⁷⁻¹⁴⁸ Furthermore, the accumulation of TiO₂ NPs in the brain could cause alterations in brain biochemistry and changes in neurotransmitter levels, contributing to behavioral changes.^{149-160,161-168} Although all of these studies confirm that TiO₂ NPs cause neurotoxic effects through different mechanisms, most of the evidence on the neurotoxic effects of TiO₂ NPs is fragmentary and is obtained from different species. Furthermore, few of these mechanism studies have explored whether the neurotoxic effects of TiO₂ NPs are mediated through synergistic interactions of multiple brain regions, organs, and systems. Whether TiO₂ NPs with different characteristics cause different degrees of toxic effects through different mechanisms remains be further explored. Extensive systematic studies are needed to fully elucidate the neurotoxic mechanisms of TiO₂ NPs, which will be helpful for the prevention and treatment of neurotoxic effects of TiO₂ NPs.

Conclusion

Animals and humans can be exposed to TiO₂ NPs through different exposure pathways, thus posing health hazards. At present, the neurotoxic effects of TiO₂ NPs have only been evaluated through animal models, including rats, mice, and zebra fish, and cell studies, including primary neurons, PC12, and SH-SY5Y cell lines. TiO₂ NPs can induce oxidative stress, promote neuro inflammation, alter brain biochemistry, or damage neurons. Neuronal damage can further lead to various behavioral disorders and is closely associated with increased onset and development of neuro developmental or neurodegenerative diseases. However, due to the lack of relevant epidemiological studies, whether TiO₂ NPs are linked to neuro developmental or neurodegenerative diseases in humans remains unknown. Furthermore, the neurotoxic potential of TiO₂ NPs can be affected by various factors. There is a need for researchers to understand the neurotoxic effects of TiO₂ NPs on humans and develop strategies for mitigating the effects of TiO₂ NPs on human health.

Abbreviations

NMs, nanomaterials; TiO₂ NPs, titanium dioxide nanoparticles; FPs, fine particles; PB, placental barrier; BBB, blood- brain barrier; *C. elegans*, *Caenorhabditis elegans*; SD rats, Sprague-Dawley rats; PND, postnatal day; BDNF, brain- derived neurotrophic factor; BW, body weight; BDE-209, decabromodiphenyl oxide; NMJ, neuromuscular junction; AchE, acetylcholinesterase; MDA, malondialdehyde; CNS, central nervous system; NMDA, N-methyl-D-aspartic acid; ER, endoplasmic reticulum; HBMECs, human brain microvascular endothelial cells; DRG, dorsal root ganglion; HCECs, human cerebral endothelial cell line; HNSCs, human neural stem cell line; 1C11, neuroectodermal stem cell line; DLS, Dynamic light scattering; REL, recommended exposure limit; NIOSH, National Institute for Occupational Safety and Health; ROS, reactive oxygen species; ASD, autism spectrum disorder; PD, Parkinson's disease

Reference

1. Grande F, Tucci P. Titanium dioxide nanoparticles: a risk for human health? *Mini Rev Med Chem.* 2016;16(9):762–769. doi:10.2174/ 13895575166661603211143412
2. Weir A, Westerhoff P, Fabricius L, et al. Titanium dioxide nanoparticles in food and personal care products. *Environ Sci Technol.* 2012;46 (4):2242–2250. doi:10.1021/es204168d3.
3. Mueller NC, Nowack B. Exposure modeling of engineered nanoparticles in the environment. *Environ Sci Technol.* 2008;42(12):4447–4453. doi:10.1021/es70296374.
4. Shakeel M, Jabeen F, Shabbir S, et al. Toxicity of Nano-Titanium Dioxide (TiO₂-NP) through various routes of exposure: a review. *Biol Trace Elem Res.* 2016;172(1):1–36. doi:10.1007/s12011-015-0550-x5.
5. Ali SA, Rizk MZ, Hamed MA, et al. Assessment of titanium dioxide nanoparticles toxicity via oral exposure in mice: effect of dose and particle size. *Biomarkers.* 2019;24(5):492–498. doi:10.1080/1354750X.2019.1620336
6. Institute IRS. The relevance of the rat lung response to particle overload for human risk assessment: a workshop consensus report. *Inhal Toxicol.* 2000;12(1–2):1–17. doi:10.1080/08958370050029725
7. Lee KP, Trochimowicz HJ, Reinhardt CF. Pulmonary response of rats exposed to titanium dioxide (TiO₂) by inhalation for two years. *Toxicol Appl Pharmacol.* 1985;79(2):179–192. doi:10.1016/0041-008x(85)90339-4
8. Racovita AD. Titanium dioxide: structure, impact, and toxicity. *Int J Environ Res Public Health.* 2022;19(9):5681. doi:10.3390/ijerph19095681
9. Shi H, Magaye R, Castranova V, et al. Titanium dioxide nanoparticles: a review of current toxicological data. *Part Fibre Toxicol.* 2013;10:15. doi:10.1186/1743-8977-10-15
10. Song B, Liu J, Feng X, et al. A review on potential neurotoxicity of titanium dioxide nanoparticles. *Nanoscale Res Lett.* 2015;10(1):1042. doi:10.1186/s11671-015-1042-9
11. Boyes WK, van Thriel C. Neurotoxicology of nanomaterials. *Chem Res Toxicol.* 2020;33(5):1121–1144. doi:10.1021/acs.chemrestox.0c00050
12. Li A, Zhuang T, Shi J, et al. Heavy metals in maternal and cord blood in Beijing and their efficiency of placental transfer. *J Environ Sci (China).* 2019;80:99–106. doi:10.1016/j.jes.2018.11.004
13. Lin Y, Li Z, An H, et al. Environmental titanium exposure and reproductive health: risk of low birth weight associated with maternal titanium exposure from a nested case-control study in northern China. *Ecotoxicol Environ Saf.* 2021;208:111632. doi:10.1016/j.ecoenv.2020.111632

14. Zheng G, Zhong H, Guo Z, et al. Levels of heavy metals and trace elements in umbilical cord blood and the risk of adverse pregnancy outcomes: a population-based study. *Biol Trace Elem Res.* 2014;160(3):437–444. doi:10.1007/s12011-014-0057-x
15. Kinghorn KJ, Grönke S, Castillo-Quan JI, et al. A *Drosophila* model of neuronopathic gaucher disease demonstrates lysosomal-autophagic defects and altered mTOR signalling and is functionally rescued by rapamycin. *J Neurosci.* 2016;36(46):11654–11670. doi:10.1523/JNEUROSCI.4527-15.2016
16. Feng W, Cui X, Liu B, et al. Association of urinary metal profiles with altered glucose levels and diabetes risk: a population-based study in China. *PLoS One.* 2015;10(4):e0123742. doi:10.1371/journal.pone.0123742
17. Xiao Y, Yuan Y, Liu Y, et al. Circulating multiple metals and incident stroke in Chinese adults. *Stroke.* 2019;50(7):1661–1668. doi:10.1161/STROKEAHA.119.025060
18. Yang L, Jiang Y, Zhao L, et al. Multiple metals exposure and arterial stiffness: a panel study in China. *Chemosphere.* 2021;263:128217. doi:10.1016/j.chemosphere.2020.128217
19. Yuan Y, Xiao Y, Feng W, et al. Plasma metal concentrations and incident coronary heart disease in Chinese adults: the Dongfeng-Tongji cohort. *Environ Health Perspect.* 2017;125(10):107007. doi:10.1289/EHP1521
20. Yamano S, Goto Y, Takeda T, et al. Pulmonary dust foci as rat pneumoconiosis lesion induced by titanium dioxide nanoparticles in 13-week inhalation study. *Part Fibre Toxicol.* 2022;19(1):58. doi:10.1186/s12989-022-00498-3
21. Sagawa T, Honda A, Ishikawa R, et al. Role of necroptosis of alveolar macrophages in acute lung inflammation of mice exposed to titanium dioxide nanoparticles. *Nanotoxicology.* 2021;15(10):1312–1330. doi:10.1080/17435390.2021.2022231
22. Wu Y, Chen L, Chen F, et al. A key moment for TiO(2): prenatal exposure to TiO(2) nanoparticles may inhibit the development of offspring. *Ecotoxicol Environ Saf.* 2020;202:110911. doi:10.1016/j.ecoenv.2020.110911
23. Chen Z, Wang Y, Zhuo L, et al. Effect of titanium dioxide nanoparticles on the cardiovascular system after oral administration. *Toxicol Lett.* 2015;239(2):123–130. doi:10.1016/j.toxlet.2015.09.013
24. Savi M, Rossi S, Bocchi L, et al. Titanium dioxide nanoparticles promote arrhythmias via a direct interaction with rat cardiac tissue. *Part Fibre Toxicol.* 2014;11(1):63. doi:10.1186/s12989-014-0063-3
25. Hong F, Zhao X, Chen M, et al. TiO2 nanoparticles-induced apoptosis of primary cultured Sertoli cells of mice. *J Biomed Mater Res A.* 2016;104(1):124–135. doi:10.1002/jbm.a.35548
26. Hussain S, Thomassen LC, Ferecatu I, et al. Carbon black and titanium dioxide nanoparticles elicit distinct apoptotic pathways in bronchial epithelial cells. *Part Fibre Toxicol.* 2010;7:10. doi:10.1186/1743-8977-7-10
27. Li X, Kang B, Eom Y, et al. Comparison of cytotoxicity effects induced by four different types of nanoparticles in human corneal and conjunctival epithelial cells. *Sci Rep.* 2022;12(1):155. doi:10.1038/s41598-021-04199-3
28. Rihane N, Nury T, M’rad I, et al. Microglial cells (BV-2) internalize titanium dioxide (TiO2) nanoparticles: toxicity and cellular responses. *Environ Sci Pollut Res Int.* 2016;23(10):9690–9699. doi:10.1007/s11356-016-6190-7

29. Teleanu DM, Chircov C, Grumezescu A, et al. Neurotoxicity of nanomaterials: an up-to-date overview. *Nanomaterials*. 2019;9(1):96. doi:10.3390/nano9010096

30. Liu Y, He Q. The route of nanomaterials entering brain. In: *Neurotoxicity of Nanomaterials and Nanomedicine*. Elsevier; 2017:33–57.

31. Liu X, Sui B, Sun J. Size- and shape-dependent effects of titanium dioxide nanoparticles on the permeabilization of the blood-brain barrier. *J Mater Chem B*. 2017;5(48):9558–9570. doi:10.1039/c7tb01314k

32. Jiang X, Gao H. *Neurotoxicity of Nanomaterials and Nanomedicine*. Academic Press; 2016.

33. Bencsik A, Lestaevel P, Guseva Canu I. Nano- and neurotoxicology: an emerging discipline. *Prog Neurobiol*. 2018;160:45–63. doi:10.1016/j.pneurobio.2017.10.003

34. Teschke K, Marion SA, Tsui JKC, et al. Parkinson's disease and occupation: differences in associations by case identification method suggest referral bias. *Am. J. Ind. Med.* 2014;57(2):163–171. doi:10.1002/ajim.22272

35. Andujar P, Simon-Deckers A, Galateau-Sallé F, et al. Role of metal oxide nanoparticles in histopathological changes observed in the lung of welders. *Part Fibre Toxicol*. 2014;11(1):23. doi:10.1186/1743-8977-11-23

36. Iqubal A, Ahmed M, Ahmad S, et al. Environmental neurotoxic pollutants: review. *Environ Sci Pollut Res Int*. 2020;27(33):41175–41198. doi:10.1007/s11356-020-10539-z

37. Gottschalk F, Sonderer T, Scholz RW, et al. Modeled environmental concentrations of engineered nanomaterials (TiO₂, ZnO, Ag, CNT, Fullerenes) for different regions. *Environ Sci Technol*. 2009;43(24):9216–9222. doi:10.1021/es9015553

38. Zhang R, Zhang H, Tu C, et al. Facilitated transport of titanium dioxide nanoparticles by humic substances in saturated porous media under acidic conditions. *J Nanopart Res*. 2015;17(4):1–11. doi:10.1007/s11051-015-2972-y

39. Gosset P, Lassalle P, Vanhée D, et al. Production of tumor necrosis factor- α and Interleukin-6 by human alveolar macrophages exposed in vitro to coal mine dust. *Am J Respir Cell Mol Biol*. 1991;5(5):431–436. doi:10.1165/ajrcmb/5.5.431

40. Mao Y, Bajinka O, Tang Z, et al. Lung-brain axis: metabolomics and pathological changes in lungs and brain of respiratory syncytial virus-infected mice. *J Med Virol*. 2022;94(12):5885–5893. doi:10.1002/jmv.28061

41. Jiang Y, Wei Y, Guo W, et al. Prenatal titanium exposure and child neurodevelopment at 1 year of age: a longitudinal prospective birth cohort study. *Chemosphere*. 2023;311(Pt 1):137034. doi:10.1016/j.chemosphere.2022.137034

42. Li Z, Huo W, Li Z, et al. Association between titanium and silver concentrations in maternal hair and risk of neural tube defects in offspring: a case-control study in north China. *Reprod Toxicol*. 2016;66:115–121. doi:10.1016/j.reprotox.2016.10.006

43. Zhang X, Mei D, Li Y, et al. Arsenic exposure via drinking water during pregnancy and lactation induces autism-like behaviors in male offspring mice. *Chemosphere*. 2022;290:133338. doi:10.1016/j.chemosphere.2021.133338

44. Mohammadipour A, Hosseini M, Fazel A, et al. The effects of exposure to titanium dioxide nanoparticles during lactation period on learning and memory of rat offspring. *Toxicol Ind Health*. 2016;32(2):221–228. doi:10.1177/0748233713498440

45. Mortensen NP, Pathmasiri W, Snyder RW, et al. Oral administration of TiO₂ nanoparticles during early life impacts cardiac and neurobehavioral performance and

metabolite profile in an age- and sex-related manner. *Part Fibre Toxicol.* 2022;19(1):3. doi:10.1186/s12989-021-00444-9

46. Mohammadipour A, Fazel A, Haghiri H, et al. Maternal exposure to titanium dioxide nanoparticles during pregnancy; impaired memory and decreased hippocampal cell proliferation in rat offspring. *Environ Toxicol Pharmacol.* 2014;37(2):617–625. doi:10.1016/j.etap.2014.01.014

47. Cui Y, Chen X, Zhou Z, et al. Prenatal exposure to nanoparticulate titanium dioxide enhances depressive-like behaviors in adult rats. *Chemosphere.* 2014;96:99–104. doi:10.1016/j.chemosphere.2013.07.051

48. Engler-Chiurazzi EB, Stapleton PA, Stalnaker JJ, et al. Impacts of prenatal nanomaterial exposure on male adult Sprague-Dawley rat behavior and cognition. *J Toxicol Environ Health A.* 2016;79(11):447–452. doi:10.1080/15287394.2016.1164101

49. Asghari A, Hosseini M, Beheshti F, et al. Inducible nitric oxide inhibitor aminoguanidine, ameliorated oxidative stress, interleukin-6 concentration and improved brain-derived neurotrophic factor in the brain tissues of neonates born from titanium dioxide nanoparticles exposed rats. *J Matern Fetal Neonatal Med.* 2019;32(23):3962–3973. doi:10.1080/14767058.2018.148060250. Ebrahimzadeh Bideskan A, Mohammadipour A, Fazel A, et al. Maternal exposure to titanium dioxide nanoparticles during pregnancy and lactation alters offspring hippocampal mRNA BAX and Bcl-2 levels, induces apoptosis and decreases neurogenesis. *Exp Toxicol Pathol.* 2017;69(6):329–337. doi:10.1016/j.etp.2017.02.006

51. Gao X, Yin S, Tang M, et al. Effects of developmental exposure to TiO₂ nanoparticles on synaptic plasticity in hippocampal dentate gyrus area: an in vivo study in anesthetized rats. *Biol Trace Elem Res.* 2011;143(3):1616–1628. doi:10.1007/s12011-011-8990-4

52. Grissa I, Guezguez S, Ezzi L, et al. The effect of titanium dioxide nanoparticles on neuroinflammation response in rat brain. *Environ Sci Pollut Res Int.* 2016;23(20):20205–20213. doi:10.1007/s11356-016-7234-8

53. Grissa I, ElGhoul J, Mrimi R, et al. In deep evaluation of the neurotoxicity of orally administered TiO₂ nanoparticles. *Brain Res Bull.* 2020;155:119–128. doi:10.1016/j.brainresbull.2019.10.005

54. Nalika N, Waseem M, Kaushik P, et al. Role of melatonin and quercetin as countermeasures to the mitochondrial dysfunction induced by titanium dioxide nanoparticles. *Life Sci.* 2023;328:121403. doi:10.1016/j.lfs.2023.121403

55. Krawczynska A, Dziendzikowska K, Gromadzka-Ostrowska J, et al. Silver and titanium dioxide nanoparticles alter oxidative/inflammatory response and renin-angiotensin system in brain. *Food Chem Toxicol.* 2015;85:96–105. doi:10.1016/j.fct.2015.08.005

56. Valentini X, Deneufbourg P, Paci P, et al. Morphological alterations induced by the exposure to TiO₂ nanoparticles in primary cortical neuron cultures and in the brain of rats. *Toxicol Rep.* 2018;5:878–889. doi:10.1016/j.toxrep.2018.08.006

57. Naima R, Imen M, Mustapha J, et al. Acute titanium dioxide nanoparticles exposure impaired spatial cognitive performance through neurotoxic and oxidative mechanisms in Wistar rats. *Biomarkers.* 2021;26(8):760–769. doi:10.1080/1354750X.2021.1999501

58. Horvath T, Papp A, Kovács D, et al. Electrophysiological alterations and general toxic signs obtained by subacute administration of titanium dioxide nanoparticles to the airways of rats. *Ideggyogy Sz.* 2017;70(3–4):127–135. doi:10.18071/isz.70.0127

59. Papp A, Horváth T, Igaz N, et al. Presence of titanium and toxic effects observed in rat lungs, kidneys, and central nervous system in vivo and in cultured astrocytes in vitro on exposure by titanium dioxide nanorods. *Int J Nanomedicine*. 2020;15:9939–99

60. doi:10.2147/IJN.S27593760. Horvath T, Vezér T, Kozma G, et al. Functional neurotoxicity and tissue metal levels in rats exposed subacutely to titanium dioxide nanoparticles via the airways. *Ideggyogy Sz*. 2018;71(1–02):35–42. doi:10.18071/isz.71.0035

61. Younes NR, Amara S, Mrad I, et al. Subacute toxicity of titanium dioxide (TiO₂) nanoparticles in male rats: emotional behavior and pathophysiological examination. *Environ Sci Pollut Res Int*. 2015;22(11):8728–8737. doi:10.1007/s11356-014-4002-5

62. Nalika N, Parvez S. Mitochondrial dysfunction in titanium dioxide nanoparticle-induced neurotoxicity. *Toxicol Mech Methods*. 2015;25(5):355–363. doi:10.3109/15376516.2015.1020183

63. Cui Y, Che Y, Wang H. Nono-titanium dioxide exposure during the adolescent period induces neurotoxicities in rats: ameliorative potential of bergamot essential oil. *Brain Behav*. 2021;11(5):e02099. doi:10.1002/brb3.2099

64. Latif MA, Jabeen F, Ali M, et al. Neurotoxic effects of titanium dioxide nanoparticles on the brain of male sprague dawley rats. *Pak J Pharm Sci*. 2019;32(5(Supplementary)):2311–2316.

65. Disdier C, Chalansonnet M, Gagnaire F, et al. Brain inflammation, blood brain barrier dysfunction and neuronal synaptophysin decrease after inhalation exposure to titanium dioxide nano-aerosol in aging rats. *Sci Rep*. 2017;7(1):12196. doi:10.1038/s41598-017-12404-5

66. Halawa A, Elshopakey G, El-Adl M, et al. Chitosan attenuated the neurotoxicity-induced titanium dioxide nanoparticles in brain of adult rats. *Environ Toxicol Int J*. 2022;37(3):612–626. doi:10.1002/tox.23429

67. Herting MM, Sowell ER. Puberty and structural brain development in humans. *Front Neuroendocrinol*. 2017;44:122–137. doi:10.1016/j.yfrne.2016.12.003

68. Lees B, Meredith LR, Kirkland AE, et al. Effect of alcohol use on the adolescent brain and behavior. *Pharmacol Biochem Behav*. 2020;192:172906. doi:10.1016/j.pbb.2020.172906

69. Jiang M, Jang SE, Zeng L. The effects of extrinsic and intrinsic factors on neurogenesis. *Cells*. 2023;12(9):1285. doi:10.3390/cells12091285

70. Ribeiro FF, Xapelli S. An overview of adult neurogenesis. *Adv Exp Med Biol*. 2021;1331:77–94. doi:10.1007/978-3-030-74046-7_7

71. Erdo F, Bors LA, Farkas D, Bajza Á, Gizurarson S. Evaluation of intranasal delivery route of drug administration for brain targeting. *Brain Res Bull*. 2018;143:155–170. doi:10.1016/j.brainresbull.2018.10.009

72. Ze Y, Hu R, Wang X, et al. Neurotoxicity and gene-expressed profile in brain-injured mice caused by exposure to titanium dioxide nanoparticles. *J Biomed Mater Res A*. 2014;102(2):470–478. doi:10.1002/jbm.a.34705

73. Wang J, Liu Y, Jiao F, et al. Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO₂ nanoparticles. *Toxicology*. 2008;254(1–2):82–90. doi:10.1016/j.tox.2008.09.014

74. Zhang L, Bai R, Li B, et al. Rutile TiO₂ particles exert size and surface coating dependent retention and lesions on the murine brain. *Toxicol Lett*. 2011;207(1):73–81. doi:10.1016/j.toxlet.2011.08.001

75. Ze X, Su M, Zhao X, et al. TiO₂ nanoparticle-induced neurotoxicity may be involved in dysfunction of glutamate metabolism and its receptor expression in mice. *Environ Toxicol: Int J.* 2016;31(6):655–662. doi:10.1002/tox.22077

76. Ze Y, Sheng L, Zhao X, et al. TiO₂ nanoparticles induced hippocampal neuroinflammation in mice. *PLoS One.* 2014;9(3):e92230. doi:10.1371/journal.pone.0092230

77. Wang J, Chen C, Liu Y, et al. Potential neurological lesion after nasal instillation of TiO₂ nanoparticles in the anatase and rutile crystal phases. *Toxicol Lett.* 2008;183(1–3):72–80. doi:10.1016/j.toxlet.2008.10.001

78. Ze Y, Zheng L, Zhao X, et al. Molecular mechanism of titanium dioxide nanoparticles-induced oxidative injury in the brain of mice. *Chemosphere.* 2013;92(9):1183–1189. doi:10.1016/j.chemosphere.2013.01.094

79. Tachibana K, Kawazoe S, Onoda A, et al. Effects of prenatal exposure to titanium dioxide nanoparticles on DNA methylation and gene expression profile in the mouse brain. *Front Toxicol.* 2021;3:705910. doi:10.3389/ftox.2021.705910

80. Ze Y, Sheng L, Zhao X, et al. Neurotoxic characteristics of spatial recognition damage of the hippocampus in mice following subchronic peroral exposure to TiO₂ nanoparticles. *J Hazard Mater.* 2014;264:219–229. doi:10.1016/j.jhazmat.2013.10.072

81. Vandenberg LN, Welshons WV, Vom Saal FS, Toutain PL, Myers JP. Should oral gavage be abandoned in toxicity testing of endocrine disruptors? *Environ Health.* 2014;13(1):46. doi:10.1186/1476-069X-13-46

82. Su J, Duan X, Qiu Y, et al. Pregnancy exposure of titanium dioxide nanoparticles causes intestinal dysbiosis and neurobehavioral impairments that are not significant postnatally but emerge in adulthood of offspring. *J Nanobiotechnology.* 2021;19(1):234. doi:10.1186/s12951-021-00967-5

83. Yang C, Xue J, Qin Q, et al. Prenatal exposure to titanium dioxide nanoparticles induces persistent neurobehavioral impairments in maternal mice that is associated with microbiota-gut-brain axis. *Food Chem Toxicol.* 2022;169:113402. doi:10.1016/j.fct.2022.113402

84. Zhou Y, Ji J, Chen C, Hong F. Retardation of axonal and dendritic outgrowth is associated with the MAPK signaling pathway in offspring mice following maternal exposure to nanosized titanium dioxide. *J Agric Food Chem.* 2019;67(9):2709–2715. doi:10.1021/acs.jafc.8b06992

85. Hong F, Zhou Y, Ji J, et al. Nano-TiO₂ inhibits development of the central nervous system and its mechanism in offspring mice. *J Agric Food Chem.* 2018;66(44):11767–11774. doi:10.1021/acs.jafc.8b02952

86. Zhou Y, Hong F, Tian Y, et al. Nanoparticulate titanium dioxide-inhibited dendritic development is involved in apoptosis and autophagy of hippocampal neurons in offspring mice. *Toxicol Res.* 2017;6(6):889–901. doi:10.1039/c7tx00153c

87. Heidari Z, Mohammadipour A, Haeri P, Ebrahimzadeh-Bideskan A. The effect of titanium dioxide nanoparticles on mice midbrain substantia nigra. *Iran J Basic Med Sci.* 2019;22(7):745–751. doi:10.22038/ijbms.2019.33611.8018

88. Umezawa M, Tainaka H, Kawashima N, et al. Effect of fetal exposure to titanium dioxide nanoparticle on brain development – brain region information. *J Toxicol Sci.* 2012;37(6):1247–1252. doi:10.2131/jts.37.1247

89. Shimizu M, Tainaka H, Oba T, et al. Maternal exposure to nanoparticulate titanium dioxide during the prenatal period alters gene expression related to brain development in the mouse. *Part Fibre Toxicol.* 2009;6(1):20. doi:10.1186/1743-8977-6-20

90. Takahashi Y, Mizuo K, Shinkai Y, et al. Prenatal exposure to titanium dioxide nanoparticles increases dopamine levels in the prefrontal cortex and neostriatum of mice. *J Toxicol Sci.* 2010;35(5):749–756. doi:10.2131/jts.35.749

91. Tarlan M, Sajedianfard J, Fathi M. Effect of titanium dioxide nanoparticles administered during pregnancy on depression-like behavior in forced swimming and tail suspension tests in offspring mice. *Toxicol Ind Health.* 2020;36(4):297–304. doi:10.1177/0748233720925707

92. Ma L, Liu J, Li N, et al. Oxidative stress in the brain of mice caused by translocated nanoparticulate TiO₂ delivered to the abdominal cavity. *Biomaterials.* 2010;31(1):99–105. doi:10.1016/j.biomaterials.2009.09.028

93. Habibi P, Ostad SN, Monazzam MR, et al. Thermal stress and TiO(2) nanoparticle-induced oxidative DNA damage and apoptosis in mouse hippocampus. *Environ Sci Pollut Res Int.* 2022;29(60):90128–90139. doi:10.1007/s11356-022-21796-5

94. Wang J-X, Li Y-F, Zhou G-Q, et al. [Influence of intranasal instilled titanium dioxide nanoparticles on monoaminergic neurotransmitters of female mice at different exposure time]. *Zhonghua Yu Fang Yi Xue Za Zhi.* 2007;41(2):91–95. Chinese.

95. Hu R, Gong X, Duan Y, et al. Neurotoxicological effects and the impairment of spatial recognition memory in mice caused by exposure to TiO₂ nanoparticles. *Biomaterials.* 2010;31(31):8043–8050. doi:10.1016/j.biomaterials.2010.07.011

96. Hu R, Zheng L, Zhang T, et al. Molecular mechanism of hippocampal apoptosis of mice following exposure to titanium dioxide nanoparticles. *J Hazard Mater.* 2011;191(1–3):32–40. doi:10.1016/j.jhazmat.2011.04.027

97. Jia X, Wang S, Zhou L, et al. The potential liver, brain, and embryo toxicity of titanium dioxide nanoparticles on mice. *Nanoscale Res Lett.* 2017;12(1):478. doi:10.1186/s11671-017-2242-2

98. Zhang S, Jiang X, Cheng S, et al. Titanium dioxide nanoparticles via oral exposure leads to adverse disturbance of gut microecology and locomotor activity in adult mice. *Arch Toxicol.* 2020;94(4):1173–1190. doi:10.1007/s00204-020-02698-2

99. Shin JA, Lee EJ, Seo SM, et al. Nanosized titanium dioxide enhanced inflammatory responses in the septic brain of mouse. *Neuroscience.* 2010;165(2):445–454. doi:10.1016/j.neuroscience.2009.10.057

100. Notter T, Aengenheister L, Weber-Stadlbauer U, et al. Prenatal exposure to TiO(2) nanoparticles in mice causes behavioral deficits with relevance to autism spectrum disorder and beyond. *Transl Psychiatry.* 2018;8(1):193. doi:10.1038/s41398-018-0251-2

101. Sofranko A, Wahle T, Heusinkveld HJ, et al. Evaluation of the neurotoxic effects of engineered nanomaterials in C57BL/6J mice in 28-day oral exposure studies. *Neurotoxicology.* 2021;84:155–171. doi:10.1016/j.neuro.2021.03.005102. Mohamadzadeh N, Zirak Javanmard M, Karimipour M, et al. Developmental toxicity of the neural tube induced by titanium dioxide nanoparticles in mouse embryos. *Avicenna J Med Biotechnol.* 2021;13(2):74–80. doi:10.18502/ajmb.v13i2.5524

103. Shrivastava R, Raza S, Yadav A, et al. Effects of sub-acute exposure to TiO₂, ZnO and Al₂O₃ nanoparticles on oxidative stress and histological changes in mouse liver and brain. *Drug Chem Toxicol.* 2014;37(3):336–347. doi:10.3109/01480545.2013.866134

104. Mohamed HR, Hussien NA. Genotoxicity studies of Titanium Dioxide Nanoparticles (TiO₂NPs) in the brain of mice. *Scientifica*. 2016;2016:6710840. doi:10.1155/2016/6710840

105. Liu W, Huang G, Su X, et al. Zebrafish: a promising model for evaluating the toxicity of carbon dot-based nanomaterials. *ACS Appl Mater Interfaces*. 2020;12(43):49012–49020. doi:10.1021/acsami.0c17492

106. Hu S, Han J, Yang L, et al. Impact of co-exposure to titanium dioxide nanoparticles and Pb on zebrafish embryos. *Chemosphere*. 2019;233:579–589. doi:10.1016/j.chemosphere.2019.06.009

107. Miao W, Zhu B, Xiao X, et al. Effects of titanium dioxide nanoparticles on lead bioconcentration and toxicity on thyroid endocrine system and neuronal development in zebrafish larvae. *Aquat Toxicol*. 2015;161:117–126. doi:10.1016/j.aquatox.2015.02.002

108. Wang Q, Chen Q, Zhou P, et al. Bioconcentration and metabolism of BDE-209 in the presence of titanium dioxide nanoparticles and impact on the thyroid endocrine system and neuronal development in zebrafish larvae. *Nanotoxicology*. 2014;8 Suppl 1:196–207. doi:10.3109/17435390.2013.875232

109. Li M, Wu Q, Wang Q, Xiang D, Zhu G. Effect of titanium dioxide nanoparticles on the bioavailability and neurotoxicity of cypermethrin in zebrafish larvae. *Aquat Toxicol*. 2018;199:212–219. doi:10.1016/j.aquatox.2018.03.022

110. Fan B, Dai L, Liu C, et al. Nano-TiO₂) aggravates bioaccumulation and developmental neurotoxicity of triphenyl phosphate in zebrafish larvae. *Chemosphere*. 2022;287(Pt 3):132161. doi:10.1016/j.chemosphere.2021.132161

111. Fu J, Guo Y, Yang L, Han J, Zhou B. Nano-TiO₂) enhanced bioaccumulation and developmental neurotoxicity of bisphenol a in zebrafish larvae. *Environ Res*. 2020;187:109682. doi:10.1016/j.envres.2020.109682

112. Guo Y, Chen L, Wu J, et al. Parental co-exposure to bisphenol A and nano-TiO₂) causes thyroid endocrine disruption and developmental neurotoxicity in zebrafish offspring. *Sci Total Environ*. 2019;650(Pt 1):557–565. doi:10.1016/j.scitotenv.2018.09.007

113. Zhu R, Liu C, Wang J, et al. Nano-TiO₂) aggravates bioaccumulation and developmental neurotoxicity of difenoconazole in zebrafish larvae via oxidative stress and apoptosis: protective role of vitamin C. *Ecotoxicol Environ Saf*. 2023;251:114554. doi:10.1016/j.ecoenv.2023.114554

114. Xu L, Yang X, He Y, Hu Q, Fu Z. Combined exposure to titanium dioxide and tetracycline induces neurotoxicity in zebrafish. *Comp Biochem Physiol C*. 2023;267:109562. doi:10.1016/j.cbpc.2023.109562

115. Wu Q, Yan W, Liu C, et al. Co-exposure with titanium dioxide nanoparticles exacerbates MCLR-induced brain injury in zebrafish. *Sci Total Environ*. 2019;693:133540. doi:10.1016/j.scitotenv.2019.07.346

116. Lei L, Qiao K, Guo Y, et al. Titanium dioxide nanoparticles enhanced thyroid endocrine disruption of pentachlorophenol rather than neurobehavioral defects in zebrafish larvae. *Chemosphere*. 2020;249:126536. doi:10.1016/j.chemosphere.2020.126536

117. Sheng L, Wang L, Su M, et al. Mechanism of TiO₂ nanoparticle-induced neurotoxicity in zebrafish (Danio rerio). *Environ Toxicol Int J*. 2016;31(2):163–175. doi:10.1002/tox.22031

118. Chen J, Li J, Jiang H, et al. Developmental co-exposure of TBBPA and titanium dioxide nanoparticle induced behavioral deficits in larval zebrafish. *Ecotoxicol Environ Saf.* 2021;215:112176. doi:10.1016/j.ecoenv.2021.112176

119. Chen J, Lei L, Mo W, et al. Developmental titanium dioxide nanoparticle exposure induces oxidative stress and neurobehavioral changes in zebrafish. *Aquat Toxicol.* 2021;240:105990. doi:10.1016/j.aquatox.2021.105990

120. Gu J, Guo M, Huang C, et al. Titanium dioxide nanoparticle affects motor behavior, neurodevelopment and axonal growth in zebrafish (*Danio rerio*) larvae. *Sci Total Environ.* 2021;754:142315. doi:10.1016/j.scitotenv.2020.142315

121. Sun X, Yang Q, Jing M, et al. Environmentally relevant concentrations of organic (benzophenone-3) and inorganic (titanium dioxide nanoparticles) UV filters co-exposure induced neurodevelopmental toxicity in zebrafish. *Ecotoxicol Environ Saf.* 2023;249:114343. doi:10.1016/j.ecoenv.2022.114343

122. Hu Q, Guo F, Zhao F, et al. Effects of titanium dioxide nanoparticles exposure on parkinsonism in zebrafish larvae and PC12. *Chemosphere.* 2017;173:373–379. doi:10.1016/j.chemosphere.2017.01.063

123. Caruso G, Scalisi EM, Pecoraro R, et al. Effects of carnosine on the embryonic development and TiO(2) nanoparticles-induced oxidative stress on Zebrafish. *Front Vet Sci.* 2023;10:1148766. doi:10.3389/fvets.2023.1148766

124. Palaniappan PR, Pramod KS. The effect of titanium dioxide on the biochemical constituents of the brain of Zebrafish (*Danio rerio*): an FT-IR study. *Spectrochim Acta A Mol Biomol Spectrosc.* 2011;79(1):206–212. doi:10.1016/j.saa.2011.02.038125. Kaur K, Narang RK, Singh S. Glabridin mitigates TiO(2)NP induced cognitive deficit in adult zebrafish. *Neurochem Int.* 2023;169:105585. doi:10.1016/j.neuint.2023.105585

126. Bauer B, Mally A, Liedtke D. Zebrafish embryos and larvae as alternative animal models for toxicity testing. *Int J Mol Sci.* 2021;22(24):13417. doi:10.3390/ijms222413417

127. Zhao Y, Wu Q, Tang M, et al. The in vivo underlying mechanism for recovery response formation in nano-titanium dioxide exposed *Caenorhabditis elegans* after transfer to the normal condition. *Nanomedicine.* 2014;10(1):89–98. doi:10.1016/j.nano.2013.07.004

128. Hu CC, Wu G-H, Hua T-E, et al. Uptake of TiO 2 nanoparticles into *C. elegans* neurons negatively affects axonal growth and worm locomotion behavior. *ACS Appl Mater Interfaces.* 2018;10(10):8485–8495. doi:10.1021/acsami.7b18818

129. Zhang X, Song Y, Wang J, et al. Chronic exposure to titanium dioxide nanoparticles induces deficits of locomotor behavior by disrupting the development of NMJ in *Drosophila*. *Sci Total Environ.* 2023;888:164076. doi:10.1016/j.scitotenv.2023.164076

130. Guan X, Shi W, Zha S, et al. Neurotoxic impact of acute TiO(2) nanoparticle exposure on a benthic marine bivalve mollusk, *Tegillarca granosa*. *Aquat Toxicol.* 2018;200:241–246. doi:10.1016/j.aquatox.2018.05.011

131. Khalil AM. Neurotoxicity and biochemical responses in the earthworm *Pheretima hawayana* exposed to TiO2NPs. *Ecotoxicol Environ Saf.* 2015;122:455–461. doi:10.1016/j.ecoenv.2015.09.010

132. Ruszkiewicz JA, Pinkas A, Miah MR, et al. *C. elegans* as a model in developmental neurotoxicology. *Toxicol Appl Pharmacol.* 2018;354:126–135. doi:10.1016/j.taap.2018.03.016

133. Chifiriuc MC, Ratiu A, Popa M, et al. Drosophotoxicology: an emerging research area for assessing nanoparticles interaction with living organisms. *Int J Mol Sci.* 2016;17(2):36. doi:10.3390/ijms17020036

134. Ong C, Yung L-YL, Cai Y, et al. *Drosophila melanogaster* as a model organism to study nanotoxicity. *Nanotoxicology.* 2015;9(3):396–403. doi:10.3109/17435390.2014.940405

135. Sun TY, Bornhöft NA, Hungerbühler K, et al. Dynamic probabilistic modeling of environmental emissions of engineered nanomaterials. *Environ Sci Technol.* 2016;50(9):4701–4711. doi:10.1021/acs.est.5b05828

136. McShane H, Sarrazin M, Whalen JK, et al. Reproductive and behavioral responses of earthworms exposed to nano-sized titanium dioxide in soil. *Environ Toxicol Chem.* 2012;31(1):184–193. doi:10.1002/etc.714

137. Tiffany-Castiglioni E, Ehrich M, Dees L, et al. Bridging the gap between in vitro and in vivo models for neurotoxicology. *Toxicol Sci.* 1999;51 (2):178–183. doi:10.1093/toxsci/51.2.178

138. Viessmann C, Ballweg J, Lumbard D, Dent EW. Nucleofection and primary culture of embryonic mouse hippocampal and cortical neurons. *J Vis Exp.* 2011;47:e2373.

139. Sheng L, Ze Y, Wang L, et al. Mechanisms of TiO₂ nanoparticle-induced neuronal apoptosis in rat primary cultured hippocampal neurons. *J Biomed Mater Res A.* 2015;103(3):1141–1149. doi:10.1002/jbm.a.35263

140. Gerber LS, Heusinkveld HJ, Langendoen C, et al. Acute, sub-chronic and chronic exposures to TiO(2) and Ag nanoparticles differentially affects neuronal function in vitro. *Neurotoxicology.* 2022;93:311–323. doi:10.1016/j.neuro.2022.10.010141. Strickland JD, Lefew WR, Crooks J, et al. In vitro screening of metal oxide nanoparticles for effects on neural function using cortical networks on microelectrode arrays. *Nanotoxicology.* 2016;10(5):619–628. doi:10.3109/17435390.2015.1107142

142. Sun Y, Wang S, Zheng J. Biosynthesis of TiO(2) nanoparticles and their application for treatment of brain injury—an in-vitro toxicity study towards central nervous system. *J Photochem Photobiol B.* 2019;194:1–5. doi:10.1016/j.jphotobiol.2019.02.008

143. Gramowski A, Flossdorf J, Bhattacharya K, et al. Nanoparticles induce changes of the electrical activity of neuronal networks on microelectrode array neurochips. *Environ Health Perspect.* 2010;118(10):1363–1369. doi:10.1289/ehp.0901661

144. Winter M, Beer H-D, Hornung V, et al. Activation of the inflammasome by amorphous silica and TiO₂ nanoparticles in murine dendritic cells. *Nanotoxicology.* 2011;5(3):326–340. doi:10.3109/17435390.2010.506957

145. Hong F, Sheng L, Ze Y, et al. Suppression of neurite outgrowth of primary cultured hippocampal neurons is involved in impairment of glutamate metabolism and NMDA receptor function caused by nanoparticulate TiO₂. *Biomaterials.* 2015;53:76–85. doi:10.1016/j.biomaterials.2015.02.067

146. Mu X, Li W, Ze X, et al. Molecular mechanism of nanoparticulate TiO₂ induction of axonal development inhibition in rat primary cultured hippocampal neurons. *Environ Toxicol: Int J.* 2020;35(8):895–905. doi:10.1002/tox.22926

147. Hong F, Ze Y, Zhou Y, et al. Nanoparticulate TiO₂-mediated inhibition of the Wnt signaling pathway causes dendritic development disorder in cultured rat hippocampal neurons. *J Biomed Mater Res A.* 2017;105(8):2139–2149. doi:10.1002/jbm.a.36073

148. Hong F, Ze X, Mu X, et al. Titanium dioxide inhibits hippocampal neuronal synapse growth through the brain-derived neurotrophic factor-tyrosine kinase receptor B signaling pathway. *J Biomed Nanotechnol.* 2021;17(1):37–52. doi:10.1166/jbn.2021.2999

149. Liu S, Xu L, Zhang T, et al. Oxidative stress and apoptosis induced by nanosized titanium dioxide in PC12 cells. *Toxicology.* 2010;267(1–3):172–177. doi:10.1016/j.tox.2009.11.012

150. Wu J, Xie H. Effects of titanium dioxide nanoparticles on alpha-synuclein aggregation and the ubiquitin-proteasome system in dopaminergic neurons. *Artif Cells Nanomed Biotechnol.* 2016;44(2):690–694. doi:10.3109/21691401.2014.980507

151. Irie T, Kawakami T, Sato K, et al. Sub-toxic concentrations of nano-ZnO and nano-TiO₂ suppress neurite outgrowth in differentiated PC12 cells. *J Toxicol Sci.* 2017;42(6):723–729. doi:10.2131/jts.42.723

152. Wu J, Sun J, Xue Y. Involvement of JNK and P53 activation in G2/M cell cycle arrest and apoptosis induced by titanium dioxide nanoparticles in neuron cells. *Toxicol Lett.* 2010;199(3):269–276. doi:10.1016/j.toxlet.2010.09.009

153. Ferraro SA, Domingo MG, Etcheverrito A, et al. Neurotoxicity mediated by oxidative stress caused by titanium dioxide nanoparticles in human neuroblastoma (SH-SY5Y) cells. *J Trace Elem Med Biol.* 2020;57:126413. doi:10.1016/j.jtemb.2019.126413

154. Lojk J, Repas J, Veranič P, et al. Toxicity mechanisms of selected engineered nanoparticles on human neural cells in vitro. *Toxicology.* 2020;432:152364. doi:10.1016/j.tox.2020.152364

155. Valdiglesias V, Costa C, Sharma V, et al. Comparative study on effects of two different types of titanium dioxide nanoparticles on human neuronal cells. *Food Chem Toxicol.* 2013;57:352–361. doi:10.1016/j.fct.2013.04.010

156. Mao Z, Xu B, Ji X, et al. Titanium dioxide nanoparticles alter cellular morphology via disturbing the microtubule dynamics. *Nanoscale.* 2015;7 (18):8466–8475. doi:10.1039/c5nr01448d

157. Rosario F, Costa C, Lopes CB, et al. In vitro hepatotoxic and neurotoxic effects of titanium and cerium dioxide nanoparticles, arsenic and mercury co-exposure. *Int J Mol Sci.* 2022;23(5):2737. doi:10.3390/ijms23052737

158. Zhou T, Huang W-K, Xu Q-Y, et al. Nec-1 attenuates neurotoxicity induced by titanium dioxide nanomaterials on Sh-Sy5y cells through RIP1. *Nanoscale Res Lett.* 2020;15(1):65. doi:10.1186/s11671-020-03300-5

159. He Q, Zhou X, Liu Y, et al. Titanium dioxide nanoparticles induce mouse hippocampal neuron apoptosis via oxidative stress- and calcium imbalance-mediated endoplasmic reticulum stress. *Environ Toxicol Pharmacol.* 2018;63:6–15. doi:10.1016/j.etap.2018.08.003

160. Shafer TJ, Atchison WD. Transmitter, ion channel and receptor properties of pheochromocytoma (PC12) cells: a model for neurotoxicological studies. *Neurotoxicology.* 1991;12(3):473–492.

161. Lopez-Suarez L, Awabdh SA, Coumoul X, et al. The SH-SY5Y human neuroblastoma cell line, a relevant in vitro cell model for investigating neurotoxicology in human: focus on organic pollutants. *Neurotoxicology.* 2022;92:131–155. doi:10.1016/j.neuro.2022.07.008

162. Coccini T, Grandi S, Lonati D, et al. Comparative cellular toxicity of titanium dioxide nanoparticles on human astrocyte and neuronal cells after acute and prolonged exposure. *Neurotoxicology.* 2015;48:77–89. doi:10.1016/j.neuro.2015.03.006

163. Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states. *Br J Pharmacol.* 2016;173(4):649–665. doi:10.1111/bph.13139
164. Long TC, Saleh N, Tilton RD, et al. Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. *Environ Sci Technol.* 2006;40(14):4346–4352. doi:10.1021/es060589n
165. Colombo E, Farina C. Astrocytes: key regulators of neuroinflammation. *Trends Immunol.* 2016;37(9):608–620. doi:10.1016/j.it.2016.06.006
166. Wilson CL, Natarajan V, Hayward SL, et al. Mitochondrial dysfunction and loss of glutamate uptake in primary astrocytes exposed to titanium dioxide nanoparticles. *Nanoscale.* 2015;7(44):18477–18488. doi:10.1039/c5nr03646a
167. Perez-Arizti JA, Ventura-Gallegos JL, Galván Juárez RE, et al. Titanium dioxide nanoparticles promote oxidative stress, autophagy and reduce NLRP3 in primary rat astrocytes. *Chem Biol Interact.* 2020;317:108966. doi:10.1016/j.cbi.2020.108966
168. Liu Y, Xu Z, Li X. Cytotoxicity of titanium dioxide nanoparticles in rat neuroglia cells. *Brain Inj.* 2013;27(7–8):934–939. doi:10.3109/ 02699052.2013.793401