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ABSTRACT

In this paper, we prove some strong and A-convergence results for non-expansive mappings
through the S*-iterative process in hyperbolic spaces. Our results are an extension and
generalization of existing results in the literature.
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1. INTRODUCTION

The concept of non-expansive mappings was introduced by [3]. It can be defined in many
general settings of metric spaces. Let : P —P be a self-map on a nonempty subset b of a Banach
space U, R is said to be non-expansive if

d(Bs, Bt) < d(s, t) for all s,te P (1.2)
The notation F(B) has been reserved for the set of fixed points of B. The concept of A-
convergence was introduced by Lim [14]. Previously several iterative processes have been
evolved in which have been operated various numbers of steps to find the fixed points. In
Banach contraction, the theorem involved a one-step iteration process known as the Picard
iteration process. Some of the well-known iterative processes as Mann [15] is a one-step
process, Ishikhawa [8] is a two steps process, Noor [16], S. Agrawal [2], Abbass [1] Picard -S
Gursoy and Karakaya [5], Gursoy [6] and Thakur et. al. [19] are Three steps iterative process

and so on. Recently, in [7] the authors introduced the following four-step iterative process,
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called S* iterative process in Banach Spaces. Let 3: P —b be a self-map on a nonempty subset
b of a Banach space U and {&n}, {én}, {0n}and {Un}are real sequences in (0,1) for all n > 0.

Generate the sequence{hn}iteratively, arbitrary ho € b, by

I{hn+1 = B(( 1- én)gn + élnfsgn)
4 En = B((l —ék, + éngkn)
Lkn = B((1 = 6n)jn + 6nRin)
jin = R((1 —ay)h, + G,Rh, neb

(1.2)

Motivated by the above, we construct the hyperbolic space version S*-iterative Furthermore,
we established A-convergence as well as strong convergence of the steps iterative process for
non-expansive mapping in hyperbolic spaces.
2. PRELIMINARIES
In this study, we discuss the setting of hyperbolic spaces which was introduced by Kohlenbach
[11], containing normed linear spaces and convex subsets and Hadamrd manifolds [17],
CAT(0) spaces in the sense of Gromov[4] and Hilbert ball equipped with the hyperbolic metric
[17]. In this context, we need some definitions, lemmas, and prepositions that will be used in
the sequel,
Definition 1 [11] A hyperbolic space is a triple (U, p , W) where (U, p) is a metric space and
W:U?x[0,1] — U such that (W1) p(w, W(s, t, ) < (1-w) p(W, S) + wp(w, t)

(W2) p(W(s t, w), p(s, t, 0)) =| w — o p(s, 1),

(W3) W(s, t, w) = W(t,s, (1 - w)),

(W4) p(W(s, z, ),W(t, W, w) < (1 - w) p(s, t) + wp(z, W)
Foralls,t,w,ze Uand w,6 €[01]
Definition 2 [12] A hyperbolic space (U, p, W) is called uniformly convex, if for all s, t, z €

U, r>0and ¢ € (0 2] there exists § € (0 1], such that
p(t,s) r

<
p(z,s) <1 »=>p(W(t z%)s)<(1-9d)r. (2.1)
p(t,z) < er
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Definition 3 [12] A mapping u: (0o ) x (0 2] — (0 1) which provides 6 = u(r,¢) for a
givenr>0and ¢ e (0 2] is well known as a modulus of uniform convexity of U. We call u as
a monotone if it decreases with r (for a fixed €), i.e., for any given € > 0 and for any r2 > ry >
0, we have u (r2, € ) <(r1, €).

Definition 4 [12] A non-empty subset b of a hyperbolic space is said to be convex if W(s, t,
w)ebforanys, teb and we [01]. Ifs, te Uand w e [0, 1], then we use the notion (1-
w)s @ wt for W(s, t, ). In [20], it is remarked that any normed space (U, | |.| |) is a
hyperbolic space, with(1 - w )s @ wt = (1 - w )s +wt . Hence, the class of uniformly convex
hyperbolic spaces is a natural generalization of uniformly convex Banach spaces.

Let b be a nonempty, closed, and convex subset of a Hyperbolic space U, {hn} a bounded
sequence in U and s e b, we define a function r(., {hn}) : U- [0,00] by

r(s, {hn}) = limsup n— oo p(s, hn)

An asymptotic radius of {hn} relative to b is defined by

r(p, {hn}) = inf{r{s,{hn}) : s € b}.

An asymptotic center of {hn} relative to b is defined by

AC(P, {hn}) ={s e b: r(s,{hn}) = r(P, {hn}) }.

The sequence{hn}in U is said to A-convergence to s € b if s is a unique asymptotic center
of{kn}for every subsequence{kn} of{hn}. In this case, we write A-lim sup n — oo h, = h and
call h the A-lim of {hn}.

Lemma 2.1 [13] Let U be a complete uniformly convex Hyperbolic space with a monotone
modulus of uniform convexity u.Then every bounded sequence {hn} in U has a unique
asymptotic canter with respect to any nonempty closed convex subset b of U.

Lemma 2.2 [9] Let U be a complete uniformly convex Hyperbolic space with a monotone

modulus of uniform convexity u. Let s € P and{&n} be a sequence in [a, b] for some a, b € (0,
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1). If {hn} and {gn} are sequences in U such that limsup n— o p (h, h) <9, limsup n— o p
(gn, h) <9 and lim n— cop(W(hn, g, &n), h) =9 for some 9 = 0. Then, lim n— cop(hn, gn) = 0.
3. MAIN RESULTS
Firstly, the S* -iteration process is expressed in the Hyperbolic space as follows:
Let B: b —b be a self-map on a nonempty subset b of a hyperbolic space U and {a}, {én},
{6n}and {Un}are real sequences in (0,1) for all n > 0. Generate the sequence{hn}iteratively,
arbitrary ho € P, by
hyy1 = W(Bgn, gn,an)
gn = W(Bkp, ky, €,)

k, = W(Bjn'jn' én)
jn = W(hn' Bhn; ﬁn) nebp

(3.1)

Lemma 1 Let 3: P —b be a non-expansive self-mapping satisfying (1.1), where b is a nonempty

closed & convex subset of a uniformly convex hyperbolic space U. Let {h} be a sequence
generated by (3.1); Then lim n—oo p(h, hn) exists for all h € F(R).

Proof- leth e F(R) & hne P; since 3 is non-expansive mapping, we can easily obtain that
p(Bh, B hn) = p(h, hn) < p(h, hn); forall hne b & h e F(R)
Thus using (2.1), we obtain that
p(n.h) = p(W(hn, Bhn, 4y), h)
<(1—-1y,) p(hn, h) + G,p(Bhy, h)
= (1-1p) p(hn, h) + Gpp(Bhn, Bh)
<(1—=1y) p(hn, h) +Gpp(hn, h)
p(n, h) < p(hn, h) (i)
using (3.1) & (i)
p(kn,h) = p(W(Bjn, jn, 6n), N)
<(1=06n) p(Bjn, h) + 6, p(jn, h)

= (1= 64) p(Bjn, Bh) + 6 p(jnh)
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<(1=064) p(n, h) + 65 p(in, h)
p(kn,h) < p(jn, h)
p(kn, h) < p(hn, h) (ii)
using (3.1) & (ii)
p(@n,h) = p(W(BKn, kn, &), h)

< (1-¢,) p(Bkn, h) + é, p(kn, h)

= (1-¢ép) p(Bkn, Bh) + €, p(kn,h)

<(1-¢€p) p(kn, h) + é,p(kn, h)
p(Gn, h) < p(kn, h)
P(Gn, 1) < p(hn, h) (iii)
using (3.1) & (iii)
p(hne,h) = p(W(Bgn, g, an), h)

<(1-ayn) p(Bgn, h) +ay, p(gn, h)

= (1-4ap) p(Rgn, Bh) +a, p(gn, h)

<(1-4n) p(gn, h) +an p(gn, h)
p(hn+1, h) < p(gn, h)
p(hnet, h) < p(hn, h) (iv)
Thus, the sequence { p (hn, h)}is bounded below & decreasing. Hence lim n —coo p(hn, h)
exists for all h € F(R3).
Lemma 2 Let 3: P —b be a non-expansive self-mapping satisfying (1.1), where b is a nonempty
closed & convex subset of a uniformly convex hyperbolic space U. Let {hn} be a sequence
generated by (3.1). Then F(R)+# ¢, if and only if {hs} is bounded & lim n—0o0 p(Bhn, hy) = 0.
Proof- Assume that F(3)# ¢, & h € F([3), by lemma 1, {hn}is bounded.
Next, we will indicate that lim n— oo p(3h,, hn) =0

Since B is non-expansive mapping, we have
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p(h, Bhn) = p(Bh, Bhn) < p(h,hn) (v)
from lemmal, we achieve lim n— oo p(hn, h) exists for all h € F([3)
Assume that lim n — oo p(hn, h) = a, a > 0. then
p(kn,h) = p(W(hn, Bhn, 6y), h)

< (1) p(hn, h) + 6, p(Bhy, h)

= (1= 6y) p(hn, h) + 64 p(Bhn, Bh)

< (1=06p) p(hn, h) + 65p(hn, h)
p(kn, h) < p(hn, h)
Taking limsup as n —» o
limsup n— oo p(kn, h) < limsup n— o p(hy, h) = @ (vi)
From (ii) & (iv)
p(hn+1, 1) < p(gn, h) < p(kn, h)
p(hn+1, h) < p(kn, h)
Taking liminfasn - o
a < liminfn - oo p(hn+1, h) <liminfn — oo p(kn, ) (vii)
From (vi) & (vii)
liminf n - oo p(kn, h) = a, we get that
limsup n— oo p(kn, h) < limsup n— oo p(hn, h) = (viii)
It follows from lemma 2.2, (vii) & (viii)
lim n— oo p(Bhy, hn) =0
Conversely, assume that {hn} is bounded and lim n— oo p(Bhn, hy) = 0. Let p € AC(P, {hn});
Using 1.1, we have
r(8h, {hn}) = limsup n — o p(Bh, hn)

<limsup n — oo p(h, hn); holds for all u, v € b.

= limsup n - o p(h, hn)
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= r(h,{hn}) = r(P, {hn}).
That is 8h e AC(P,{hn}). Since U is uniformly convex, AC(b,{hn}) is a singleton, implying that
Bh=h.
Now we prove A-convergence theorem for non-expansive mappings in Hyperbolic space.
Theorem 3.1 Let b be a nonempty closed, convex subset of U and R:p—b be a non-expansive
mapping which satisfies condition (1.1) with F(R)# ¢,let{hn}A-converges to a fixed point of 3
Proof- It follows from lemma 2 that {hn} is a bonded sequence. Thus, {h,}has a A-convergent
subsequence. Now, we are going to show that every A-convergent subsequence of{h,} has a
unique A-limit in F(RB).
Let s and t be A-limits of the sequences {hnj}and { hn, } of {hn}respectively. From lemma 2.1,
we have
AC(P{ hy}) ={s} & AC(P.{pn,}) ={t}
By lemma 2, we obtain that lim n— oo d(hnj, Bhn) =0 & lim n— oo d(h,,,, Bhn) = 0.
Next, we prove that s & t are fixed points of B & s, t should be are unique, Now
p(Bs, pn)) < p(Bs, Bpy)) + p(Bpy;, 5)
<p(S, Pnj) + p(Bpy;, 5) (ix)

Implies that, r(Gu, {pnj}) = limsup n — oo p(L3s, pnj)

<limsup n — oo p(R3s, Bpnj) + p(Ban., S)

<limsup n = o0 p(s, p,;) + p(Bpp;, )

=p(s, pn))

=1(u{ pn,})
The uniqueness of the asymptotic center implies Bs =s. Thus, s is a fixed point of s.

Similarly, we also have t as a fixed point of
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Finaly, we show that s =t. Suppose s and t are distinct, by the uniqueness of an asymptotic
center, we have
limsupn — oo p(hy, S) = limsupn - o p(hnj, S)

<limsupn — oo p(hn]., t)

= limsup n — oo p(hn, S)

= limsupn — o p(hy, ,t)

<limsup n - o p(hy,.s)

= limsup n = oo p(hn, S)
This is a contradiction. Thus s = t. Then {hn} A-converges ta a fixed point of 3.
Next, we prove some strong convergence theorems-
Theorem 3.2 Let b is a nonempty closed & convex subset of a uniformly convex hyperbolic
space U & R : b —b be a non-expansive self-mapping satisfying (1.1) with F(R) # ¢. Then the
sequence { hn } generated by the iterative scheme (3.1) converges to the point of F(R)if and
only if liminf n— cod(hn, F(R))=0 where d(hn, F(R)) = inf { p(hn, h); h € F(B) }.
Proof- Assume that {hn} converges to h € F(l3) so, lim n — oo p(hn, h) =0, because
0 < p(hn,F(B) < p(hn, h) forall h e F(R)
Therefore liminf n — oo p(hn, F(B) ) =0
Conversely, assume that liminfn — o p(hs, F(B)) =0 & h € F(B), from lemmal limn — o
p(hn, h) exists for all h e F(R), therefore lim n — oo p(hn, F(1)) = 0 by the assumption.
Now it is enough to show that {hn} is Cauchy sequence in 3
Therefore limn — oo p(hs, F(B)) = 0, for a given € > 0 there exists mye N such that for all n
= my
p(hn, F(R)) < /2

inf{ p(hn, h: h e F(R) } < &/2
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In particular, inf { p(h,,,, h; h € F(R) } < /2, therefore there exists h e F(B) such that
p(hy,, h) < e/2
Now for m, n = mo
p(hm+n, h) < p(hm+n, h) + p(hn, h)

< p(Bang: ) + PPy H)

=2 p(hyny )
p(hm+n, h) < €
Thus, {hn}is a Cauchy sequence in 3, since 3 is closed there is a point g € 8 such that limn —
oo hp =¢g. Now limn — o p(hs, F(R)) = 0. gives that p(qg, F(R)), that is g € F(R).
Theorem 3.3 Let b is a nonempty closed & convex subset of a uniformly convex hyperbolic
space U with monotone modulus of uniform convexity u & R: b — b be a non-expansive self-
mapping with F(B)# ¢. Suppose that either is compact or is Semi-compact. Then the
sequence{pn} generated by the iterative scheme (3.1) converges strongly to a fixed point of .
Proof- Note that the condition(l) in [18] is weaker than both the compactness of b and the
semi-compactness of the non-expensive mapping; therefore we have the result by the below
theorem.
Condition(l) was introduced by Senter & Dotson [18] as a requirement for mapping which is
defined as the following
A mapping 3: b — b is said to satisfy condition (I). If there exists a non-decreasing function
g: R+ » R+ with g(0) =0 & g(t) > 0, for all t > 0 such that p(u, Vu) = g(p(u, F(V)), for all u
€ Y. Here R+ denotes the set of all non-negative real numbers.
Now we prove a strong convergence result using condition(l)
Theorem 3.4 Let b be a nonempty closed, convex subset of U and B: P — b be a non-expansive
self-mapping which satisfies condition (1). Then the sequence{pn} generated by (3.1)

converges strongly to a fixed point of 3
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Proof- we proved the following in Lemma 2

lim n—o0 p(Bhn, hn) =0 (3.2)
Using conditions (I) & (3.2), we get

0 < lim n = oo g(p(hn, F(B)) < lim n = oo p(Bhy, hy) = 0 implies lim n = oo g(p(hn, F(R)) =
0.From g: R+ = R+ with g(0) = 0 & g(t) > 0, for all t > 0 we have

limn — oo p(hn, F(B) =0

By applying Theorem 3.2, we obtain the desired result; therefore, the sequence {hn} converges
strongly to a fixed point of 3.

4. CONCLUSION

In this work, We consider a uniformly convex hyperbolic space, which is a more general
framework that encompasses uniformly convex Banach spaces as a special case. Our results
extend the corresponding results of S. Hassan [7] & S. H. Khan [10] for non-expansive type
mappings through the S*-iterative process from Banach spaces to the general setting of

hyperbolic spaces.
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