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ABSTRACT  

In this paper, we prove some strong and ∆-convergence results for non-expansive mappings 

through the S*-iterative process in hyperbolic spaces. Our results are an extension and 

generalization of existing results in the literature. 
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1. INTRODUCTION 

The concept of non-expansive mappings was introduced by [3]. It can be defined in many 

general settings of metric spaces. Let ß: Þ →Þ be a self-map on a nonempty subset Þ of a Banach 

space Ú, ß is said to be non-expansive if  

d(ßs, ßt) ≤ d(s, t) for all s,t ϵ Þ               (1.1) 

The notation F(ß) has been reserved for the set of fixed points of ß. The concept of ∆-

convergence was introduced by Lim [14].  Previously several iterative processes have been 

evolved in which have been operated various numbers of steps to find the fixed points.  In 

Banach contraction, the theorem involved a one-step iteration process known as the Picard 

iteration process. Some of the well-known iterative processes as Mann [15] is a one-step 

process, Ishikhawa [8] is a two steps process, Noor [16], S. Agrawal [2], Abbass [1] Picard -S 

Gursoy and Karakaya [5], Gursoy [6] and Thakur et. al. [19] are Three steps iterative process 

and so on. Recently, in [7] the authors introduced the following four-step iterative process, 
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called S* iterative process in Banach Spaces. Let ß: Þ →Þ be a self-map on a nonempty subset 

Þ of a Banach space Ú and {án}, {én}, {ón}and {ún}are real sequences in (0,1) for all n ≥ 0. 

Generate the sequence{hn}iteratively, arbitrary h0 ϵ Þ, by 

{
 
 

 
 hn+1 =  ß(

( 1 − án)gn + ánßgn)                  

gn =  ß((1 − én)kn + énßkn)                        

kn =  ß((1 − ón)jn + ónßjn)                          

jn =  ß((1 − ún)hn + únßhn             n ϵ Þ      

                                                                     (1.2) 

Motivated by the above, we construct the hyperbolic space version S*-iterative Furthermore, 

we established ∆-convergence as well as strong convergence of the steps iterative process for 

non-expansive mapping in hyperbolic spaces.                                                                             

2. PRELIMINARIES 

In this study, we discuss the setting of hyperbolic spaces which was introduced by Kohlenbach 

[11], containing normed linear spaces and convex subsets and Hadamrd manifolds [17], 

CAT(0) spaces in the sense of Gromov[4] and Hilbert ball equipped with the hyperbolic metric 

[17]. In this context, we need some definitions, lemmas, and prepositions that will be used in 

the sequel, 

Definition 1 [11] A hyperbolic space is a triple (Ú, ρ , W) where (Ú, 𝜌) is a metric space and 

W:Ú 2 × [0,1] → Ú such that (W1)   ρ(w, W(s, t, ω) ≤ (1-ω) ρ(w, s) + ωρ(w, t) 

       (W2)   ρ(W(s, t, ω), ρ(s, t, σ)) =│ω− σ│ρ(s, t), 

       (W3)   W(s, t, ω) = W(t, s, (1 – ω)), 

       (W4)   ρ(W(s, z, ω),W(t, w, ω) ≤ (1 – ω) ρ(s, t) + ωρ(z, w) 

For all s, t, w, z ϵ Ú and ω, σ ∈ [01] 

Definition 2 [12] A hyperbolic space (Ú, ρ, W) is called uniformly convex, if for all s, t, z ∈

 Ú, r > 0 and 𝜀 ∈ (0 2] there exists 𝛿 𝜖 (0 1], such that  

ρ(t, s)  ≤  r
ρ(z, s)  ≤  r 
   ρ(t, z)   ≤   εr

} => ρ(W(t, z, ½ ), s) ≤ (1 – δ)r.                                                                  (2.1) 
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Definition 3 [12] A mapping  𝜇: (0 ∞ ) × (0 2] → (0 1) which provides 𝛿 =  𝜇(𝑟, 𝜀) for a 

given r > 0 and 𝜀 𝜖 (0 2] is well known as a modulus of uniform convexity of Ú. We call 𝜇  as 

a monotone if it decreases with r (for a fixed 𝜀), i.e., for any given 𝜖 > 0 and for any r2 > r1 > 

0, we have 𝜇 (r2, 𝜀 ) ≤ (r1, 𝜀). 

Definition 4 [12] A non-empty subset Þ of a hyperbolic space is said to be convex if W(s, t, 

𝜔) 𝜖 Þ for any s, t 𝜖 Þ  and 𝜔 𝜖 [0 1]. If s, t 𝜖 Ú and 𝜔 𝜖 [0, 1], then we use the notion (1- 

𝜔 )s ⊕ 𝜔t for W(s, t, 𝜔 ). In [20], it is remarked that any normed space (Ú, ││.││)  is a 

hyperbolic space, with(1 - 𝜔 )s ⊕ 𝜔t = (1 -  𝜔 )s +𝜔t . Hence, the class of uniformly convex 

hyperbolic spaces is a natural generalization of uniformly convex Banach spaces.   

Let Þ be a nonempty, closed, and convex subset of a Hyperbolic space Ú, {hn} a bounded 

sequence in Ú and s 𝜖 Þ, we define a function r(., {hn}) : Ú→ [0,∞] by 

r(s, {hn}) = limsup n→ ∞ 𝜌(s, hn) 

An asymptotic radius of {hn} relative to Þ is defined by 

r(Þ, {hn}) = inf{r{s,{hn}) : s 𝜖 Þ}.  

An asymptotic center of {hn} relative to Þ is defined by 

AC(Þ, {hn}) = {s 𝜖 Þ : r(s,{hn}) = r(Þ, {hn}) }. 

The sequence{hn}in Ú is said to ∆-convergence to s 𝜖 Þ if s is a unique asymptotic center 

of{kn}for every subsequence{kn} of{hn}. In this case, we write ∆-lim sup n → ∞ hn = h and 

call h the ∆-lim of {hn}. 

Lemma 2.1 [13] Let Ú be a complete uniformly convex Hyperbolic space with a monotone 

modulus of uniform convexity 𝜇.Then every bounded sequence {hn} in Ú has a unique 

asymptotic canter with respect to any nonempty closed convex subset Þ of Ú. 

Lemma 2.2 [9] Let Ú be a complete uniformly convex Hyperbolic space with a monotone 

modulus of uniform convexity 𝜇. Let s 𝜖 Þ and{án} be a sequence in [a, b] for some a, b 𝜖 (0, 
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1). If {hn} and {gn} are sequences in Ú such that limsup n→ ∞  𝜌 (hn, h) ≤ 𝜗, limsup n→  ∞ 𝜌 

(gn, h) ≤ 𝜗 and lim n→ ∞𝜌(W(hn, gn, án), h) = 𝜗 for some 𝜗 ≥ 0. Then, lim n→ ∞𝜌(hn, gn) = 0. 

3. MAIN RESULTS  

Firstly, the S* -iteration process is expressed in the Hyperbolic space as follows: 

Let ß: Þ →Þ be a self-map on a nonempty subset Þ of a hyperbolic space Ú and {án}, {én}, 

{ón}and {ún}are real sequences in (0,1) for all n ≥ 0. Generate the sequence{hn}iteratively, 

arbitrary h0 ϵ Þ, by 

{
 

 
  

hn+1 = W(ßgn, gn, án)                                          

gn = W(ßkn, kn, én)                                               

kn =  W(ßjn, jn, ón)                                                 
jn =  W(hn, ßhn, ún)                                n ϵ Þ     

                                                                              (3.1) 

Lemma 1 Let ß: Þ →Þ be a non-expansive self-mapping satisfying (1.1), where Þ is a nonempty 

closed & convex subset of a uniformly convex hyperbolic space Ú. Let {hn} be a sequence 

generated by (3.1); Then lim n→ꚙ 𝜌(h, hn) exists for all h ϵ F(ß). 

Proof-  let h ϵ F(ß)  & hn ϵ Þ; since ß is non-expansive mapping, we can easily obtain that 

𝜌(ßh, ß hn) = 𝜌(h, hn) ≤ 𝜌(h, hn); for all hn ϵ Þ & h ϵ F(ß) 

Thus using (2.1), we obtain that  

𝜌(jn,h) = 𝜌(W(hn, ßhn, ún), h) 

              ≤ (1 – ún) 𝜌(hn, h) + ún𝜌(ßhn, h) 

              = (1 – ún) 𝜌(hn, h) + ún𝜌(ßhn, ßh) 

              ≤ (1 – ún) 𝜌(hn, h) + ún𝜌(hn, h) 

 𝜌(jn, h) ≤ 𝜌(hn, h)                                                                                                                                      (i) 

using (3.1) & (i)  

𝜌(kn,h) = 𝜌(W(ßjn, jn, ón), h) 

              ≤ (1 – ón) 𝜌(ßjn, h) + ón 𝜌(jn, h) 

              = (1 – ón) 𝜌(ßjn, ßh) + ón 𝜌(jn,h) 
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              ≤ (1 – ón) 𝜌(jn, h) + ón 𝜌(jn, h) 

 𝜌(kn,h) ≤ 𝜌(jn, h) 

𝜌(kn, h) ≤ 𝜌(hn, h)                                                                                                                                       (ii)                                                                                                                                        

using (3.1) & (ii)  

𝜌(gn,h) = 𝜌(W(ßkn, kn, én), h) 

              ≤ (1 –én) 𝜌(ßkn, h) + én 𝜌(kn, h) 

              = (1 –én) 𝜌(ßkn, ßh) + én𝜌(kn,h) 

              ≤ (1 –én) 𝜌(kn, h) +  én𝜌(kn, h) 

 𝜌(gn, h) ≤ 𝜌(kn, h) 

𝜌(gn, h) ≤ 𝜌(hn, h)                                                                                                                                      (iii) 

using (3.1) & (iii) 

𝜌(hn+1,h) = 𝜌(W(ßgn, gn, án), h) 

               ≤ (1 – án) 𝜌(ßgn, h) + án 𝜌(gn, h) 

               = (1 – án) 𝜌(ßgn, ßh) + án 𝜌(gn, h) 

               ≤ (1 –án) 𝜌(gn, h) + án 𝜌(gn, h) 

𝜌(hn+1, h) ≤ 𝜌(gn, h) 

𝜌(hn+1, h) ≤ 𝜌(hn, h)                                                                                                                      (iv) 

Thus, the sequence { 𝜌 (hn, h)}is bounded below & decreasing. Hence lim n →ꚙ 𝜌(hn, h) 

exists for all h ϵ F(ß). 

Lemma 2 Let ß: Þ →Þ be a non-expansive self-mapping satisfying (1.1), where Þ is a nonempty 

closed & convex subset of a uniformly convex hyperbolic space Ú. Let {hn} be a sequence 

generated by (3.1). Then F(ß)≠ 𝜑, if and only if {hn} is bounded & lim n→ꚙ 𝜌(ßhn, hn) = 0. 

Proof- Assume that F(ß)≠ 𝜑, & h ϵ F(ß), by lemma 1, {hn}is bounded. 

Next, we will indicate that lim n→ ∞ 𝜌(ßhn, hn) = 0 

Since ß is non-expansive mapping, we have  
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𝜌(h, ßhn) = 𝜌(ßh, ßhn) ≤  𝜌(h,hn)                                                                                                  (v) 

from lemma1, we achieve lim n→ ∞ 𝜌(hn, h) exists for all h ϵ F(ß) 

Assume that lim n → ∞ 𝜌(hn, h) = 𝛼, 𝛼 > 0. then 

𝜌(kn,h) = 𝜌(W(hn, ßhn, ón), h) 

              ≤ (1 –v) 𝜌(hn, h) + ón 𝜌(ßhn, h) 

              = (1 – ón) 𝜌(hn, h) + ón 𝜌(ßhn, ßh) 

              ≤ (1 – ón) 𝜌(hn, h) + ón𝜌(hn, h) 

 𝜌(kn, h) ≤ 𝜌(hn, h) 

Taking limsup as n → ∞   

limsup n→ ∞ 𝜌(kn, h) ≤ limsup n→ ∞ 𝜌(hn, h) = 𝛼                                                                    (vi) 

From (ii) & (iv) 

𝜌(hn +1, h) ≤  𝜌(gn, h) ≤ 𝜌(kn, h) 

𝜌(hn+1, h) ≤ 𝜌(kn, h)  

Taking liminf as n → ∞   

𝛼 ≤ liminf n → ∞ 𝜌(hn+1, h) ≤ liminf n → ∞ 𝜌(kn, h)                                                                (vii) 

From (vi) & (vii) 

liminf n → ∞ 𝜌(kn, h) = 𝛼, we get that 

limsup n→ ∞ 𝜌(kn, h) ≤ limsup n→ ∞ 𝜌(hn, h) = 𝛼                                                                    (viii) 

It follows from lemma 2.2, (vii) & (viii) 

lim n→ ∞ 𝜌(ßhn, hn) = 0 

Conversely, assume that {hn} is bounded and lim n→ ∞ 𝜌(ßhn, hn) = 0. Let p 𝜖 AC(Þ, {hn}); 

Using 1.1, we have  

r(ßh, {hn}) = limsup 𝑛 → ∞ 𝜌(ßh, hn) 

                  ≤ limsup 𝑛 → ∞ 𝜌(h, hn); holds for all u, v 𝜖 Þ.     

                  = limsup 𝑛 → ∞ 𝜌(h, hn) 
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                  = r(h,{hn}) = r(Þ, {hn}). 

That is ßh 𝜖 AC(Þ,{hn}). Since Ú is uniformly convex, AC(Þ,{hn}) is a singleton, implying that 

ßh = h. 

Now we prove ∆-convergence theorem for non-expansive mappings in Hyperbolic space.  

Theorem 3.1 Let Þ be a nonempty closed, convex subset of Ú and ß:Þ→Þ be a non-expansive 

mapping which satisfies condition (1.1) with F(ß)≠ 𝜑,let{hn}∆-converges to a fixed point of ß 

Proof- It follows from lemma 2 that {hn} is a bonded sequence. Thus, {hn}has a ∆-convergent 

subsequence. Now, we are going to show that every ∆-convergent subsequence of{hn} has a 

unique ∆-limit in F(ß). 

Let s and t be ∆-limits of the sequences {ℎ𝑛𝑗}and { ℎ𝑛𝑘} of {hn}respectively. From lemma 2.1, 

we have  

AC(Þ,{ ℎ𝑛𝑗}) = {s} & AC(Þ,{ 𝑝𝑛𝑘}) = {t} 

By lemma 2, we obtain that lim n→ ∞ d(ℎ𝑛𝑗 , ßhn) = 0 & lim n→ ∞ d(ℎ𝑛𝑘 , ßhn) = 0. 

Next, we prove that s & t are fixed points of ß & s, t should be are unique, Now 

𝜌(ßs, 𝑝𝑛𝑗) ≤ 𝜌(ßs, ß𝑝𝑛𝑗) + 𝜌(ß𝑝𝑛𝑗, s)                                                                                                       

                ≤ 𝜌(s, 𝑝𝑛𝑗) + 𝜌(ß𝑝𝑛𝑗, s)        (ix) 

Implies that, r(Gu, { 𝑝𝑛𝑗}) = limsup 𝑛 → ∞ 𝜌(ßs, 𝑝𝑛𝑗) 

                    ≤ limsup 𝑛 → ∞ 𝜌(ßs, ß𝑝𝑛𝑗) + 𝜌(ß𝑝𝑛𝑗, s) 

`                   ≤ limsup 𝑛 → ∞ 𝜌(s, 𝑝𝑛𝑗) + 𝜌(ß𝑝𝑛𝑗, s)  

                    = 𝜌(s, 𝑝𝑛𝑗)   

                    = r(u,{ 𝑝𝑛𝑗}) 

The uniqueness of the asymptotic center implies ßs = s. Thus, s is a fixed point of s. 

Similarly, we also have t as a fixed point of ß 
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Finaly, we show that s =t. Suppose s and t are distinct, by the uniqueness of an asymptotic 

center, we have  

limsup 𝑛 → ∞ 𝜌(hn, s) = limsup 𝑛 → ∞ 𝜌(ℎ𝑛𝑗, s)  

                                           <limsup 𝑛 → ∞ 𝜌(ℎ𝑛𝑗 , t) 

                                      = limsup 𝑛 → ∞ 𝜌(hn, s) 

                                      = limsup 𝑛 → ∞ 𝜌(ℎ𝑛𝑘,t) 

                                     < limsup 𝑛 → ∞ 𝜌(ℎ𝑛𝑘 ,s) 

                                      = limsup 𝑛 → ∞ 𝜌(hn, s) 

This is a contradiction. Thus s = t. Then {hn} ∆-converges ta a fixed point of ß.    

Next, we prove some strong convergence theorems- 

Theorem 3.2 Let Þ is a nonempty closed & convex subset of a uniformly convex hyperbolic 

space Ú & ß : Þ →Þ be a non-expansive self-mapping satisfying (1.1) with  F(ß) ≠  𝜑. Then the 

sequence { hn } generated by the iterative scheme (3.1) converges to the point of F(ß)if and 

only if liminf n→ ∞d(hn, F(ß))=0 where d(hn, F(ß)) = inf { 𝜌(hn, h); h ∈ F(ß) }. 

Proof- Assume that {hn} converges to h ∈ F(ß) so, lim n → ∞ 𝜌(hn, h) = 0, because 

0 ≤ 𝜌(hn,F(ß)  ≤ 𝜌(hn, h)  for all h 𝜖 F(ß) 

Therefore liminf 𝑛 → ∞ 𝜌(hn, F(ß) ) = 0 

Conversely, assume that liminf 𝑛 → ∞ 𝜌(hn, F(ß)) = 0 & h 𝜖 F(ß), from lemma1 lim 𝑛 → ∞ 

𝜌(hn, h) exists for all h 𝜖 F(ß), therefore lim 𝑛 → ∞ 𝜌(hn, F(ß)) = 0 by the assumption. 

Now it is enough to show that {hn} is Cauchy sequence in ß 

Therefore lim𝑛 → ∞ 𝜌(hn, F(ß)) = 0, for a given 𝜀 > 0 there exists 𝑚0𝜖 N such that for all n 

≥ 𝑚0 

𝜌(hn, F(ß)) < 𝜀/2 

inf { 𝜌(hn, h; h 𝜖 F(ß) } < 𝜀/2 
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In particular, inf { 𝜌(ℎ𝑚0
, h; h 𝜖 F(ß) } < 𝜀/2, therefore there exists h 𝜖 F(ß)  such that  

 𝜌(ℎ𝑚0
, h) < 𝜀/2 

Now for m, n ≥ m0 

𝜌(hm+n, h) ≤ 𝜌(hm+n, h) + 𝜌(hn, h)  

                   ≤ 𝜌(ℎ𝑚0
, h) + 𝜌(ℎ𝑚0

, h) 

                 = 2 𝜌(ℎ𝑚0
, h) 

 𝜌(hm+n, h) < 𝜀 

Thus, {hn}is a Cauchy sequence in ß, since ß is closed there is a point q 𝜖 ß such that lim 𝑛 →

∞ hn = q. Now lim 𝑛 → ∞ 𝜌(hn, F(ß)) = 0. gives that 𝜌(q, F(ß)), that is q 𝜖 F(ß). 

Theorem 3.3 Let Þ is a nonempty closed & convex subset of a uniformly convex hyperbolic 

space Ú with monotone modulus of uniform convexity 𝜇 & ß: Þ → Þ be a non-expansive self-

mapping with F(ß)≠  𝜑. Suppose that either is compact or is Semi-compact. Then the 

sequence{pn} generated by the iterative scheme (3.1) converges strongly to a fixed point of ß. 

Proof- Note that the condition(I) in [18] is weaker than both the compactness of Þ and the 

semi-compactness of the non-expensive mapping; therefore we have the result by the below 

theorem. 

 Condition(I) was introduced by Senter & Dotson [18] as a requirement for mapping which is 

defined as the following  

A mapping ß: Þ → Þ  is said to satisfy condition (I). If there exists a non-decreasing function 

g: R+ → R+ with g(0) = 0 & g(t) > 0, for all t > 0 such that 𝜌(u, Vu) ≥ g(𝜌(u, F(V)), for all u 

𝜖 Y. Here R+ denotes the set of all non-negative real numbers. 

Now we prove a strong convergence result using condition(I) 

Theorem 3.4 Let Þ be a nonempty closed, convex subset of Ú and ß: Þ → Þ be a non-expansive 

self-mapping which satisfies condition (I). Then the sequence{pn} generated by (3.1) 

converges strongly to a fixed point of ß 
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Proof- we proved the following in Lemma 2 

lim n→ꚙ 𝜌(ßhn, hn) = 0                                                                                                                              (3.2) 

Using conditions (I) & (3.2), we get   

0 ≤ lim n → ∞ g(𝜌(hn, F(ß)) ≤ lim n → ∞ 𝜌(ßhn, hn) = 0 implies lim n → ∞ g(𝜌(hn, F(ß)) = 

0.From g: R+ → R+ with g(0) = 0 & g(t) > 0, for all t > 0 we have  

lim n → ∞ 𝜌(hn, F(ß) = 0 

By applying Theorem 3.2, we obtain the desired result; therefore, the sequence {hn} converges 

strongly to a fixed point of ß. 

4. CONCLUSION  

In this work, We consider a uniformly convex hyperbolic space, which is a more general 

framework that encompasses uniformly convex Banach spaces as a special case. Our results 

extend the corresponding results of S. Hassan [7] & S. H. Khan [10] for non-expansive type 

mappings through the S*-iterative process from Banach spaces to the general setting of 

hyperbolic spaces. 
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