

Haemolytic and Antioxidant Activity of Saponin Glycosides Isolated from Seed Powder of *Cleome viscosa*

Triveni Jinka¹, Kumar Yerkala², Karunakar Rao Kudle³, Rama Koyyati^{4*}

¹*Department of Biotechnology, Telangana Social Welfare Degree and Pg College (Women), Mahendra hills, Hyderabad 500 026, Telangana, India*

²*Department of Botany, Dr. B.R. Ambedkar Open University, Rood: No:46, Jubilee hills, Hyderabad 500 033, Telangana India.*

³*Department of Biochemistry, University College of Science, Hyderabad 500 007, Telangana, India.*

⁴*Forensic Science Unit, Department of Chemistry, University College of Science, Hyderabad 500 007, Telangana, India.*

Abstract

Glycosides which are chemicals usually present in the plants and animals have many applications in the biology and medicine. *Cleome viscosa* belonging to the family *Cleomaceae* have significant bioactive molecules with wide applications. Due to the tremendous applications of glycosides and the *Cleome viscosa*. In this study the seeds of *Cleome viscosa* were selected to extract and identify the presence of saponin glycosides and evaluate the haemolytic and antioxidant properties. The *Cleome viscosa* plant were collected from premises of Osmania University, Hyderabad, Telangana, India. The haemolytic activity and antioxidant activity of saponin glycosides extracted by analytical method from *Cleome viscosa* were evaluated. The saponin glycosides extracted from the seeds of *Cleome viscosa* can be used in medicine due to its haemolytic and antioxidant potential.

Keywords: *Cleoma viscosa*, Saponin glycosides, Haemolytic activity, Antioxidant activity.

INTRODUCTION

Saponin glycosides are plant compounds that form soapy foam when mixed with water. Because of this, they are often used as natural detergents (Aruna Jyothi Kora 2023). When saponins are broken down (hydrolyzed), they produce sugars and non-sugar part called aglycone. The aglycone part, known as sapogenin has a special chemical structure called a spirochetal side - chain, saponins are also used in medicine (Hamdi, A et. al 2024), foaming agents (Badve, M., & Humbare, T 2023), as fire extinguishers in fire incidents and even as fish poisons. Fish are killed when sapogenins are added to water, but they are still safe to eat because saponins are not harmful to humans when taken by mouth.

Saponin glycosides has wide applications in pharmacy and medicine (Man, S. et. al 2010; Onlom, C. et. al 2017; Shastri, V.P & Pino, C. 2008; Kawabata, T. et. al 2011), agriculture, industry (Price, K.R. et. al 1987), cosmetics personal care (Tamura, Y. et. al 2012), veterinary etc., (Table 1).

Plant name	Part of plant	Method of saponin extraction	Applications	Reference
<i>Dodonaea viscosa</i> JACQ	Leaf	Soxhlet and analytical	-	Bajad, P.N. et. al 2019
<i>Lepidium aucheri</i> boiss	Plant	Soxhlet method	Blood hemolytic activity and Acute toxicity	Sultan, M. Q. et. al 2022
<i>Hedera Helix Algeriensis</i>	Leaves	Maceration, Response surface method	-	Nadjia Sabri and Nadji Moulaï-Mostefa 2020
<i>Jatropha curcas</i> L.	Leaves and stem bark	Soxhlet extraction method	Surfactants	Rai, S. et. al 2023
<i>Quillaja bark/ Liquorice/ yucca</i>	Bark	Maceration, percolation, decoction modes, Soxhlet extraction	Anticancer activity, hemolytic activity	Timilsena, Y. P. et. al 2023
<i>Camellia sinensis</i>	Flower	High performance liquid chromatography	Anti-cancer	Yaomin, Wang et. al 2017
<i>Sapindus emarginatus</i>	Powered plant material	Maceration	Anti-inflammatory, anti-pyretic	C.R.Shibu Prasanth et. al 2023
<i>Gypsophila simonii</i>	Root	Acid hydrolysis	Anti-inflammatory, anticancer, antimicrobial, anti-invasive effects	A. Nihal YÜCEKUT LU 2016
<i>Cleome viscosa</i>	Root	Analysis, solvent extraction	-	Abdulaziz M 2023

Table 1: Review literature of saponin glycosides extracted from various plant sources and their applications

Cleome viscosa which is also known as wild mustard belong to a family *Cleomaceae*. It is an annual plant found universally and used as a medicinal plant as it has many biological activities (Gupta, et. al 2012). It has a wide variety of pharmacological constituents which have different medicinal actions. The younger plant parts of *Cleome viscosa* are consumed as edible vegetables.

In Ayurveda, it is used as an Anti-helminthic (Chandak, R.R. & Bhairat et.al 2010), pruritic and can be used to treat diseases like gastrointestinal problems (Parimala Devi, B. et. al 2002, Mohtasheem ul Hasan, M. et. al 2011), ringworm, flatulence, colic, dyspepsia, cough, bronchitis, cardiac disorders, inflammation of the middle ear (Wake, Rajesh & Patil et. al 2011), applied to wounds and ulcers (H. Singh et.al 2017), shows hepatoprotective activity (Gupta, N. K., & Dixit, V. K. 2009) and used as rubefacient and helps in treating infection, rheumatism, fever and headache. Traditionally, this plant is used in various disorders such as diarrhea (Research, J & Pharmacognosy, & Lenkalapally et. al 2012), fever, inflammation, liver diseases, bronchitis, skin diseases (Upadhyay, A. et. al 2014), and malarial fever. A decoction is used to treat headaches. The seeds of *Cleome viscosa* are reported to be nutritious while the leaves juice is applied to the skin as an anti-allergen. The root of this plant is considered as a remedy for scurvy and rheumatism (A. Rajani et. al 2014). The plant parts are used in treating liver diseases, chronic painful joints (Ahmed, Salman & Sultana et. al 2011) and neurological disorders (Singh, H. et. al 2016).

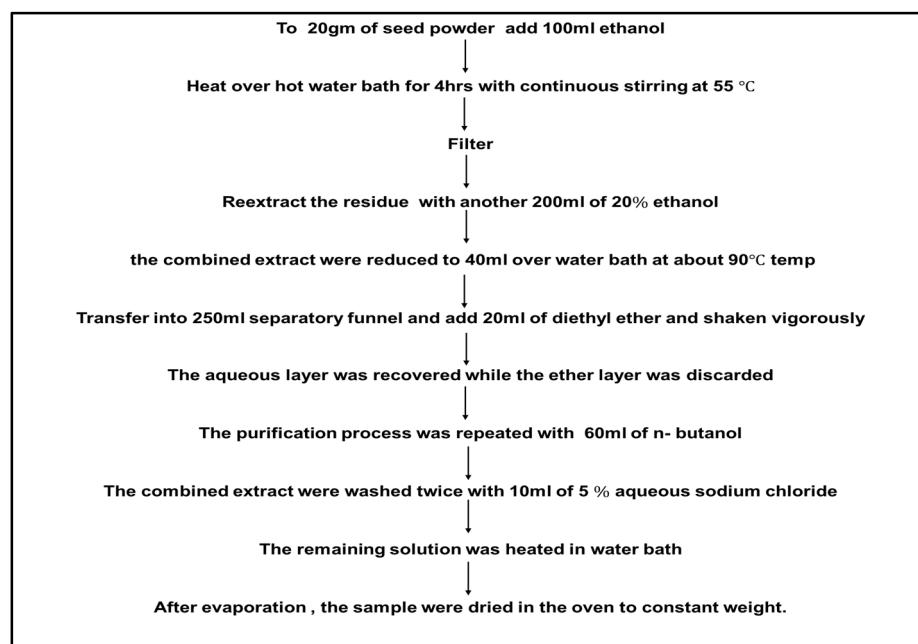
The present effort is to investigate the haemolytic and antioxidant property of saponin glycosides extracted from *Cleome viscosa*.

MATERIAL AND METHODS

Chemicals and Materials:

Filter paper, reagent bottle, centrifuge, test tubes, separatory funnel, medium size beakers, wash bottle, evaporating dish, graduated cylinder, spatula, micropipette and tips, incubator, scale, stopwatch, dropper's spectrophotometer. The chemicals used in this project are SD fine chemicals.

Collection of plant material:


Fresh seeds of *Cleome viscosa* were collected from the *Cleome viscosa* plant collected from premises of Osmania University, Hyderabad, Telangana, India.

Preparation of seed powder:

The seeds of *Cleome viscosa* were dried in a shade and were grinded well using mechanical blender into fine powder and transferred into airtight glass bottles.

Extraction of Saponin glycosides from seed powder of *Cleome viscosa*:

The saponins were extracted by analytical Method from dry seed powder of *Cleome viscosa* as follows (Figure 1).

Figure 1: Extraction protocol for the extraction of saponin glycosides from seed powder of *Cleome viscosa*

Identification of Saponin glycosides extracted from the seed powder of *Cleome viscosa* by preliminary test:

i. Honeycomb test:

Dilute 5ml of the extract with water and shake vigorously.

ii. Fehling's and Benedict's test:

To extract add 1ml of diluted sulphuric acid and boil gently for 3-5min, then make the filtrate alkaline with sodium hydroxide, then perform Fehling's and Benedict's test to identify the presence of saponins.

iii. Hemolytic test:

Take a test tube in which 1ml of 10% solution of blood in normal saline was added followed by 1ml of saponin glycosides extracted from seed powder of *Cleome viscosa* and shake the tube gently and notice the result.

Identification of Saponin glycosides extracted from seed powder of *Cleome viscosa* by thin layer chromatography:

The saponins extracted from seed powder of *Cleome viscosa* have been identified by thin layer chromatography using aluminum silicate plate as a stationary phase and chloroform: methanol: distilled water (7: 4.4:1) as a mobile phase. The dilute sulphuric acid was used as a spraying reagent followed by dried the TLC plate in a hot oven at 100 °C for 10min to visualize the isolated saponin glycosides.

Hemolytic assay of saponin glycosides extracted from seed powder of *Cleome viscosa*:

The hemolytic activity of saponin glycosides were assessed by spectrophotometric method in which a volume of 0.5 ml of the red blood cells suspension mixed with different concentrations of saponin glycosides extracted from the seed powder of *Cleome viscosa* in phosphate buffer saline. The sample mixtures were incubated for 30min at 37°C in an incubator and then centrifuged at 1500rpm for 10min. The lysis of red blood cells and the leakage of hemoglobin was assessed by measuring the hemoglobin present in the solution freely in the supernatant at 540nm by spectrophotometer. The sodium phosphate buffer was used as a negative control and Triton X-100 was used as a positive control. The experiment was carried out and percentage hemolysis calculated according to the following formula.

$$\% \text{ Haemolysis} = (A_t - A_n) / (A_c - A_n) * 100$$

Here: At is the absorbance of the test sample (saponin glycosides). An is the absorbance of the negative control (phosphate buffer) Ac is the absorbance of the positive control (Triton X 100 (10%))

Antioxidant activity of saponin glycosides extracted from seed powder of *Cleome viscosa*:

The radical scavenging activity of the extracted saponin glycosides against the 2, 2-Diphenyl-1-picrylhydrazyl radical was determined with some modifications (Kooyati, R. et. al 2019). Different concentrations of saponin glycosides were mixed with 1mL of 2, 2-Diphenyl-1-picrylhydrazyl dissolved in methanol (9mg/100ml) and set aside in the dark (15min at room temperature). The ability to scavenge 2, 2-Diphenyl-1-picrylhydrazyl radical was measured at 517nm, as follows:

$$\text{Radical scavenging (\%)} = ((A_0 - A_1) / A_0) * 100$$

Where A0 and A1 are the absorbance intensities of the control and the sample, respectively.

RESULTS AND DISCUSSION

Study area and sample Collection:

The seeds were obtained from *Cleome viscosa* plant collected from premises of Osmania University, Hyderabad, Telangana, India (Figure 2).

Figure 2: Study area of *Cleome viscosa* plant and seeds

Preparation of seed powder of *Cleome viscosa*:

The seeds were dried and grinded to powder in a grinder and stored in a stable condition for further studies (Figure 3).

Figure 3: *Cleome viscosa* seed powder

Extraction of saponin glycosides from seed powder of *Cleome viscosa*:

The saponin glycosides were extracted from the seed powder of *Cleome viscosa* by analytical method (Figure 4).

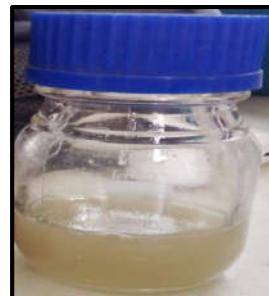


Figure 4: Extraction of saponin glycosides from seed powder of *Cleome viscosa*

Identification of saponin glycosides extracted from *Cleome viscosa* by color test:

The presence of saponin glycosides in the extracted sample was identified by honeycomb test in which a froth has been observed upon shaking the extract, in Fehling's and Benedict's test a reddish precipitate was observed and in lead acetate test yellow precipitate was observed (Figure 5), Hemolytic test in which the lysis of red blood cells was identified (Figure 6).

Figure 5: Identification of saponin glycosides extracted from seed powder of *Cleome viscosa*

Figure 6: Hemolytic test for the identification of saponin glycosides extracted from the seed powder of *Cleome viscosa*

Identification of saponin glycosides extracted from *Cleome viscosa* by thin layer chromatography:

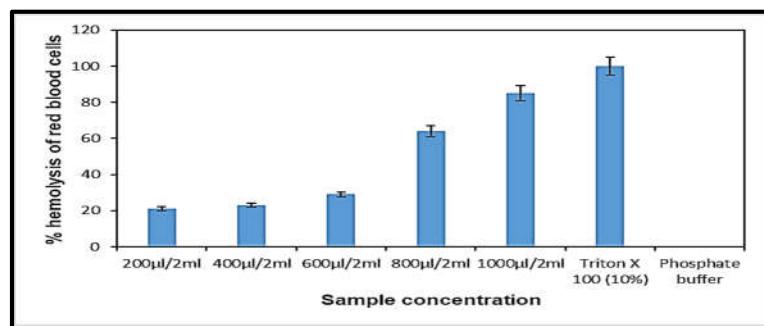

After thin layer chromatographic analysis, the saponin glycosides were separated and identified efficiently (Figure 7).

Figure 7: Identification of saponin glycosides extracted from the seed powder of *Cleome viscosa* by thin layer chromatography

Hemolytic assay of saponin glycosides extracted from seed powder of *Cleome viscosa*:

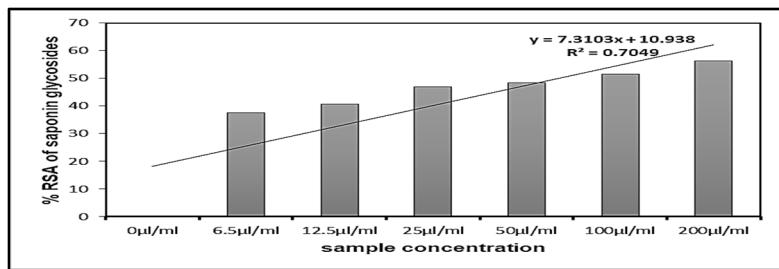

The hemolytic assay was performed by spectrophotometrically measuring the amount of hemoglobin released into the solution to assess the effect of saponin glycosides extracted from seeds of *Cleome viscosa* at pH 7.4. The performance of the hemolysis assay carried out by the negative control (Phosphate buffer) and positive control (Triton-X-100). The hemolytic activity of saponin glycosides showed efficient hemolysis of red blood cells (Figure 8).

Figure 8: Graph showing the haemolytic activity of saponin glycosides extracted from the seed powder of *Cleome viscosa*

Antioxidant activity of saponin glycosides extracted from seed powder of *Cleome viscosa* by DPPH assay:

The saponin glycosides extracted from the seed powder of *Cleome viscosa* showed efficient radical scavenging activity by DPPH assay (Figure 9).

Figure 9: Graph showing the %Radical scavenging activity of saponin glycosides extracted from the seed powder of *Cleome viscosa*

CONCLUSION

The radical scavenging activity has been widely recognized for its role in preventing oxidative damage caused by the free radicals, highly reactive species generated in the body and contribute to a myriad of diseases. However, the body's antioxidant defense system, primarily composed of antioxidants, helps neutralize these harmful radicals whereas the hemolytic potential which helps to study about the toxicity of various drugs and chemicals in blood and identify certain health problems.

In the present study, we have investigated the hemolytic and antioxidant potential of saponin glycosides extracted from the seed powder of *Cleome viscosa*. Further research is warranted to elucidate the specific mechanisms underlying their hemolytic and antioxidant activity and to explore their potential for investigating novel applications.

Conflict of interest:

The authors declare no conflict of interest.

Acknowledgements:

The authors gratefully acknowledge the Forensic science unit, Department of Chemistry, for providing facilities to carry out the present work.

References:

- A. Nihal YÜCEKUTLU. (2016). Application of saponins in food and medicine. <https://doi.org/10.13140/RG.2.2.22283.26407>
- A. Rajani, E.M. Sunitha, K. Shailaja (2014). Analysis of phytochemical constituents in leaf extract of *Cleome viscosa*. World journal of pharmaceutical research, 3(6), 1008-1013.
- Abdulaziz, M. (2023). Phytochemical Screening and Nutritional Constituents of *Cleome Viscosa* Root. Journal of Drug Design and Medicinal Chemistry, 9(3),29-34. <https://doi.org/10.11648/j.jddmc.20230903.11>
- Ahmed, Salman & Sultana, Munnawar & Hasan, Mohtasheem & Azhar, Iqbal. (2011). Analgesic and Antiemetic Activity of *Cleome Viscosa L.*. Pakistan Journal of Botany. 43. 119-122.
- Aruna Jyothi Kora, Chapter 22 - Plant saponin biosurfactants used as soap, hair cleanser, and detergent in India, Editor(s): Inamuddin, Charles Oluwaseun Adetunji, Applications of Next Generation Biosurfactants in the Food Sector, Academic Press, 2023, Pages 459-477, ISBN 9780128242834, <https://doi.org/10.1016/B978-0-12-824283-4.00004-6>
- Badve, M., & Humbare, T. (2023). Foaming and emulsifying properties of saponin glycosides: A natural non-ionic surfactant. Proceedings of the Indian National Science Academy, 89(1), 181–188. <https://doi.org/10.1007/s43538-023-00151-3>
- Bajad PN, Pardeshi AB and Pagore VP (2019). Extraction, isolation and quantification of saponin from *Dodonaea viscosa* JACQ.. The Pharma innovation journal, 8(5), 41-44.
- C.R.Shibu Prasanth, M.L. Lal Prasanth, T. Jarshina Minnath and A.Anu Jagajith (2013). A Review of different extraction methods of saponin glycosides from *Sapindus emarginatus*. 10(1), 220-223.

Chandak, R.R. & Bhairat, N.K. & Devdhe, S.J. & Majmudar, H.F.. (2010). In vitro evaluation of anthelmintic potential of leaves of *Cleome viscosa Linn*. International Journal of Pharmaceutical Sciences Review and Research. 5. 77-79.

Gupta, N. K., & Dixit, V. K. (2009). Hepatoprotective activity of *Cleome viscosa Linn*. extract against thioacetamide-induced hepatotoxicity in rats. Natural product research, 23(14), 1289–1297. <https://doi.org/10.1080/14786410802447302>

Gupta, Prakash & Rao, C.V. (2012). Pharmacognostical studies of *Cleome viscosa linn*. Indian Journal of Natural Products and Resources. 3. 527-534.

H. Singh, S.S. Ali, N.A. Khan, A. Mishra, A.K. Mishra (2017). Wound healing potential of *Cleome viscosa Linn*. seeds extract and isolation of active constituent, South African Journal of Botany, 112, 460-465, ISSN 0254-6299, <https://doi.org/10.1016/j.sajb.2017.06.026>

Hamdi, A., Viera-Alcaide, I., Jiménez-Araujo, A., Rodríguez-Arcos, R., & Guillén-Bejarano, R. (2024). Applications of saponin extract from *Asparagus* roots as functional ingredient. Foods, 13(2), 274. <https://doi.org/10.3390/foods13020274>

Kawabata, T., Cui, M.-Y., Hasegawa, T., Takano, F., & Ohta, T. (2011). Anti-inflammatory and anti-melanogenic steroid saponin glycosides from fenugreek (*Trigonella foenum-graecum* L.) seeds. *Planta Medica*, 77(07), 705–710. <https://doi.org/10.1055/s-0030-1250477>

Kooyati, R., Kudle, K. R., & Padigya, P. R. M. (2019). Antibacterial, Antioxidant and Cytotoxic Activity of Bacterial Carotenoids Isolated from *Rhodopseudomonas palustris* KRPR01 and KRPR02. International Journal of Pharmaceutical Sciences and Research (IJPSR), 10(10), 4644-4649. [https://doi.org/10.13040/IJPSR.0975-8232.10\(10\).4644-49](https://doi.org/10.13040/IJPSR.0975-8232.10(10).4644-49)

Man S., Gao, W., Zhang, Y., Huang, L., & Liu, C. (2010). Chemical study and medical application of saponins as anti-cancer agents. *Fitoterapia*, 81(7), 703–714. <https://doi.org/10.1016/j.fitote.2010.06.004>

Mohtasheem ul Hasan M, Salman A, Munnawar S, Iqbal A (2011) Analgesic and antiemetic activity of *Cleome viscosa L*. Pak J Bot. 2011; 43 (1): 119-122.66. 66.

Nadjia Sabri and Nadji Moulai-Mostefa (2020). Formulation and characterization of oil-in-water emulsions stabilized by saponins extracted from *Hedera helix algeriensis* using response surface method. *Biointerface Research in Applied Chemistry*, 10(5), 6282–6292. <https://doi.org/10.33263/BRIAC105.62826292>

Onlom, C., Phrompittayarat, W., Putalun, W., Waranuch, N., & Ingkaninan, K. (2017). Immunoaffinity knockout of saponin glycosides from *Asparagus racemosus* to assess anti-lipid peroxidation. *Phytochemical Analysis*, 28(4), 316–323. <https://doi.org/10.1002/pca.2678>

Parimala Devi, B., Boominathan, R., & Mandal, S. C. (2002). Evaluation of anti-diarrheal activity of *Cleome viscosa L.* extract in rats. *Phytomedicine*, 9(8), 739–742. <https://doi.org/10.1078/094471102321621368>

Price, K. R., Johnson, I. T., Fenwick, G. R., & Malinow, M. R. (1987). The chemistry and biological significance of saponins in foods and feedingstuffs. *C R C Critical Reviews in Food Science and Nutrition*, 26(1), 27–135. <https://doi.org/10.1080/10408398709527461>

Rai, S., Kafle, A., Devkota, H. P., & Bhattacharai, A. (2023). Characterization of saponins from the leaves and stem bark of *Jatropha curcas L.* for surface-active properties. *Helijon*, 9(5), e15807. <https://doi.org/10.1016/j.heliyon.2023.e15807>

Research, J & Pharmacognosy, & Lenkalapally, Matsyagiri & Kommu, Sudhakar. (2012). A Review on Medicinal Uses and Pharmacological Effects of *Cleome viscosa*. 4. 44-48.

Shastri, V. P., & Pino, C. (2008). Triterpene saponin glycosides: A new class of chemical penetration enhancers. *Materials Research Society Symposium Proceedings*. 2008 MRS Fall Meetin. <https://doi.org/10.1557/PROC-1140-HH02-02>

Singh, H., Mishra, A., & K. Mishra, A. (2016). Phytochemical screening, in vivo anthelmintic and anticonvulsant activity of *Cleome viscosa linn* seeds extract. *The Natural Products Journal*, 6(3), 213–218. <https://doi.org/10.2174/2210315506666160902163223>

Sultan, M. Q., Kredy, H. M., & Charfeddine, B. (2022). Blood hemolytic activity and acute toxicity of saponins extract from *lepidium aucheri boiss*. INTERNATIONAL JOURNAL OF DRUG DELIVERY TECHNOLOGY, 12(02), 870–872. <https://doi.org/10.25258/ijddt.12.2.73>

Tamura, Y., Miyakoshi, M., & Yamamoto, M. (2012). Application of Saponin-Containing Plants in Foods and Cosmetics. InTech. <https://doi.org/10.5772/53333>

Timilsena, Y. P., Phosanam, A., & Stockmann, R. (2023). Perspectives on saponins: Food functionality and applications. International Journal of Molecular Sciences, 24(17), 13538. <https://doi.org/10.3390/ijms241713538>

Upadhyay, A., Chattopadhyay, P., Goyary, D., Mazumder, P. M., & Veer, V. (2014). Topical application of *Cleome viscosa* increases the expression of basic fibroblast growth factor and type III collagen in rat cutaneous wound. BioMed research international, 2014, 680879. <https://doi.org/10.1155/2014/680879>

Wake, Rajesh & Patil, Narhari & Khadabadi, Somashekhar. (2011). In-vitro antimicrobial activity of extracts of seeds of *Cleome Viscosa Linn*. International Journal of Pharmaceutical Sciences and Research. 2. 2. 2232-2236.

Yaomin Wang, Ning Ren, Gary O. Rankin, Bo Li, Yon Rojanasakul, Youying Tu, Yi Charlie Chen(2017). Anti-proliferative effect and cell cycle arrest induced by saponins extracted from tea (*Camellia sinensis*) flower in human ovarian cancer cells. Journal of Functional Foods, 37,310-321,ISSN 1756-4646, <https://doi.org/10.1016/j.jff.2017.08.001>