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Abstract- Obtaining the optimum amount of different renewable energy sources to meet demand at the lowest
feasible cost and with the highest level of reliability is the primary objectives of this paper. Two different operating
modes are taken into consideration for this target: Battery/PV/wind/ and Battery/PV/wind/ EV. In the initial
situation the optimal number of components and cost at different levels of dependability has been determined by the
suggested algorithm. An EV with predictable and unpredictable condition is introduced to the system in the second
situation, and the LPSP is calculated in both modes. EVs have been depicted to enhance system dependability. This
study resolves the novel optimum size problem for Hybrid RESs with EVs to reduce costs and improve system
reliability by applying the proposed Adaptive Crow Search (Aadp-CSO) algorithm. The Adap-CSO technique
proposed here is a swarm intelligence-based solution influenced by the behavior of the crows that addresses the
confines of the standard CSO algorithm. Additionally, the arrival SOC of the electric vehicle and the arrival and
departure timeframes are among the uncertainties related to the EVs that are predicted using Matlab Simulink.
According to the results, the designs of both systems are feasible; nevertheless, the first system was more efficient
than the second since it used fewer wind units. Lastly, the impact on choice factors of increasing and decreasing

wind speed and load demand by 10%, 20%, and 30% was investigated.
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Abbreviation | Description

PV Photo Voltaic

WT Wind Turbine

RES Renewable Energy Sources

MG Micro-Grid

Adap-CSO Adaptive crow search optimization

TLBO Teaching-Learning-Based
Optimization

LPSP Loss Of Power Supply Probability

SOC State Of Charge

DG Distributed Generations

ES Energy Storage
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ALO Ant Lion Optimization

EV Electric Vehicles

RB-EMS Rule-Based Energy Management
Strategy

CSA Cuckoo Search Algorithm

VAWT Vertical Axis Wind Turbine

PSO Particle Swarm Optimization

JLBO Jaya Learning-Based Optimization

HAWT Horizontal Axis Wind Turbine

REF Renewable Energy Fraction

EGC Energy Generation Cost

TAC Total Annual Cost

BESS Battery Energy storage system

. INTRODUCTION

In order to elude complications, mostly in distribution networks, RESs have established in latest periods. The Hybrid
RES idea, which combines RES with DGs and ESSs to meet local demand with acceptable reliability, is selected to
address the intermittent character of RESs [1]. Maximizing the sizes of assets required to meet the system's greatest
demand while trying to lower the system's overall costs in light of technological constraints is the main problem in
these types of systems. On the other hand, road transportation is linked to the world's excessive energy consumption,
which results in environmental issues [2]. EVs are marketed as the greatest tools for cutting down on energy
consumption and emissions into the atmosphere. Variable performance modification is essential for methodologies
to produce optimal outcomes. Optimal solutions with prolonged computation periods could result from improper
adjustment of algorithm-specific variables. It is a difficult challenge to use meta heuristic algorithms in planning,
sizing [3], and constructing the contemporary optimization approaches of hybrid systems/microgrid systems. The
system components that contain PV-WT-BT were sized using ant lion optimization, one of the newest meta heuristic
algorithms [4]. To validate the obtained result from ant lion optimization [7], power flow issues are examined
utilizing the PSO [5] and CSA [6]. In order to lower costs and improve system availability, this publication must

introduce a fresh optimal size challenge for hybrid RESs in the context of EVs.

Using the MOPSO method for one residence, D. Sadeghi et al. [8] developed a novel optimum sizing issue for
HRESs in the presence of EVs in 2022 with the goal of minimizing costs and maximizing system dependability.
Additionally, MCS is utilized to estimate the uncertainties related to EVs, such as the number of arriving SOC and

the dates of arrival and departure. A sensitivity study has been conducted to ascertain the effects of variations in
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wind speed and load demand on specific criteria, and the proposed framework is applied in probabilistic and
predictable scenarios.

The JLBO algorithm, a hybrid of the Jaya and TLBO algorithms, was proposed by Asif Khan and Nadeem
Javaid [9] in 2020 as a way to optimize the sizing of a PV-WT battery system in order to service the consumer's load
with the lowest TAC. To estimate system consistency, a maximal LPSP model is useful. The results show improved
TAC performance, and this model provides a less costly option for all recommended LPSP measures, especially
when compared to the WT-battery and PV-battery models. Diab, A et al. [10] proposed a modified farmland fertility
optimization algorithm based optimal RES scaling method in 2019 that is very reliable and emits no emissions or
pollutants. The optimal component size is determined through the optimization process in order to achieve the
lowest cost of power output. Integrating LPSP as a cost consequence within the EGC is the system's objective.
Compared to the current SOA and MFFA approaches, the proposed optimization methodology has produced
superior results and converged more quickly in terms of accuracy and calculation time.

The Sparrow Search Optimization method, a metaheuristic optimization technique for scaling system
components to satisfy load demand by reducing the two objective functions, such as LPSP and Cost of Electricity
while maximizing the REF, was developed in 2023 by Mohan.H et al. [11]. Additionally, the RB-EMS is expected
to regulate the power flow in the system. The outcomes depict that the performance of the offered scheme is
improved in an on-grid structure.

Hyeon Woo et al. [12] developed a method in 2022 for determining the optimal DG unit and EVCS sizing, which
aids in accurate power system analysis and ensures EV driver happiness. To minimize loss and harmonics, the
optimal size of the system's liabilities problem is proposed using probabilistic second-order conic software
development. This convex issue illustrates the unpredictability of AC power flow and can be solved in polynomial
time. An enhanced IEEE 15 bus system is used to validate the approach, and simulations with several goals are

conducted. Therefore, the results of the recreation show that the recommended approach is effective.

The key effects of this paper are as :
e An Adap-CSO algorithm is given to address the optimal sizing problem of hybrid RESs in electric vehicle
systems.
e The quantity of arriving SOC and the uncertainty relating to the EVs contributing to the arrival and
departure times are modeled using the proposed algorithm.
The manuscript is organized as follows: Section | provides a summary and review of the hybrid RES
system.Modelling of hybrid RES is explained in Section Il. The optimal sizing problem is explained in Section Il
using the suggested Adap-CSO model. The results of the planned work are shown in Section 1V, and the conclusion
of the paper is explained in Section V.
11 MODELLING OF HYBRID RES
A. Solar PV System
An energy system that generates electricity from sunshine without the need of mechanical or chemical processes is
known as a photovoltaic system [8]. Stated differently, these technologies generate clean, reliable energy that is

independent of fossil fuels. Equation (1) is used to calculate the solar array's output power, as shown below.
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where, p, denotes the solar output power, p signify the rated power, 7 represents the coefficient of reduction
of solar surface module between 0.9 and 0.94, G_ is the light intensity, G_signifies the intensity of light under
certain conditions, s represents the temperature coefficient, T_ is the temperature standard , T_is the temperature
surface, 1, regards to the temperature of panel position, and NOCT indicates the nominal operating cell temperature

that lies between 0 and 2°C [11].

B. Wind Energy System

Two types of wind turbines, such as VAWT and HAWT, can be distinguished [13]. The HAWT is the most popular
kind of wind turbine for a number of reasons, such as its ability to harness significant wind energy, its ability to
adjust the pitch angle of its blades to avoid severe windstorms, and its ability to withstand low wind [14]. Thus, the
frame, generator with gearbox and controls, and rotor with blade are the three fundamental parts of a wind turbine.
Therefore, Equation (3) is used to determine the power produced by the wind turbine [15] [16].

Pn%, N, <N, <N,
r — "Nci 3
P.= P, N, <N, <N_ ®)

0 N, <N zor N, ,=N_

Where, cut-out speed, rated speed and cut-in speed of the WT inm/s, p_ signifies the power output of wind; P,
represents nominal power of both turbine's; N, N_ . N, and N, indicates the wind speed,. Figure. 1 depicts the

Schematic illustration of the suggested hybrid RES with an EV structure.
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Figure. 1 Schematic diagram of the suggested hybrid RES with an electric vehicle structure

C. Mathematical model of BESS

Power system dependability and electrical power quality are among the problems that arise with the quick expansion

of DG resources, particularly with regard to PV and wind turbines. In actuality, the intermittent and sinusoidal
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behavior throws off the generation-consumption balance, which could cause problems with grid stability. The
discrepancy between production and consumption is addressed by the storage systems [17].
When the total power output from WT and PV exceeds the load, the battery is said to be in a charging state, as

determined by mathematical calculations.

SOC, (1) = (1—o)SOC(t —1) — P, ,ye D, (A:t @

r

The battery's state of charge (SoC) reaches the discharging state if the total power output produced by WT and PV is
less than the load requirement. This is determined by

SOCB (t) = (1_ O') Soc(t _1) - Pdischarge (t) CAt (5)
=2

r

Where, C, indicates the rated capacity; soc signifies the charging and discharging mode, o represents the

discharge rate , ¢z, is the charging mode coefficient; «, is the coefficient of discharging mode; p, (t) specifies

ischarge

discharge power and Poparge (1) denotes charging power, respectively.

D. Mathematical Model of electric vehicle System

Because of environmental concerns, EVs is being created as an alternative to internal combustion automobiles. EVs
may meet and support network operators' objectives in addition to meeting the mobility needs of car owners. They

are also economically viable and have a smaller environmental impact. Additionally, when additional variables are

EV EV
present, EV charging and discharging are carried out in the same manner as a regular battery such as Carrivar | Laepart
EV EV
SOCarivar gnd SOCaepart . Similar to this, the arrival time and the entry and leave times of SOC follow a normal

distribution function; however, this study addresses a constraint for the EV's departure-time SOC [18] [19].

tarva ~ N(oey s ey ) (6)
toorar ~ N(ogy 26y (7
SOCLva ~ N(pey s t2ey) ®)
SOCEY,, =0.2xCyq, ©)

tEV

EV EV EV
arrival anq Laepart signifies the EV arrival and departure time, SOCarivai gng SOC

Whereas, depart indicate the SOC

arrival and departure time, , and p denotes the typical deviation and mean value, and C_,, is the capacity of
electric vehicle
111 PROSOSED ALGORITHM FOR THE CAUSE OF OPTIMAL DESIGNING

In the first scenario, the proposed Adap-CSO method was used to determine the optimal element counts and costs of
battery/ PV/wind/ systems at different LPSP ranges. After the EV was linked to the model, LPSP was reassessed
using the current EV, and its impact on LPSP was investigated. The suggested Adap-CSO algorithm is used to find
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the starting count of ideal components and pricing for different LPSP ranges with deterministic and stochastic
behavior of the EV in a Battery /PV/wind/EV system taking into consideration the second scenario.

A. Objective Model

(i) Cost: The cost may comprise the systems initialization cost (INC), replacement cost (RPC), and maintenance
cost (MAC) that are from the related Equations (10), (11), and (12), respectively

cost = RPC + INC + INC (10)
INC = (Cipw < Ny, ) +(Cin oy < N, ) + (S < N )
MAC = (Cpay % Ny, +Cp oy < Ny +Cprap < N ) (12)

X

>
(13)

I.(1+ IR
RPC =(C,, x NB)§(1+ InR

Where, jsr and ItR are the inflation, N, N, and N denotes the count of WT, PVs, and battery in the
system respectively and interest rate, T signify the lifetime of the system;
(ii) Reliability:
In the first scenario, uncertainty is assessed without taking EV into account; in the second scenario, EV is taken into

account.

Without considering EV

L pap _ s | Pow © —(Pg.?n; (1) + P, () + SoC, (1)) | (14)
20 Pow (®
Considering EV:
Lpsp _ 2 [ Ploss ) = (Puna () + P, () +S0C, (1) + SoC™ ) | (15)

300 Rosa (O
whereas, SoC, (t) signifies battery power and SoC*® (t) is the EV output power , P,  (t)indicate wind

power, P_ (t) represents PV power , B_,, (t) represent power of load correspondingly.

oad

(iii) Constraints:

The suggested methodology has been adjusted to meet a number of technical confines. These limitations are seen as
the charging and discharging of battery's characteristics, power balance, and the cap on the overall number of WT,

batteries, and PVs.
SoC,,, < SoC(t) < SoC,., (16)

P, (1) + R, (t) + SoCg (1) = R (1) a7
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Equation (16) shows that the battery's charging range per hour rises above the maximal value and does not fall

below the minimum value. The power limit balancing equation is shown in equation (17).

NMlN S NP\/ S NMAX (18)
Ny = Ny = N (19)
NM|N S NB S NMAX (20)

As a result, the constraints on the quantity of hybrid energy storage system components are shown by eqgns. (18),
(19), and (20).
B. Adaptive Crow search Optimization (Adap-CSO) Algorithm

The Adap-CSO [20] is a swarm intelligence-based method for determining the optimal solutions to real-time
problems. Additionally, the Adap-CSO expands exploration and exploitation comportment. It may converge at the
local optimal solution, as shown by the traditional CSO constraints. The environment is the search space, the crows
are the searchers, and every location in the environment corresponds to an appropriate optimization outcome. Faster
convergence and escapes from local optima are two benefits of the suggested approach. CSO provides a good
equilibrium between severity and biodiversity. Simply modifying the setting for Awareness Probability (AP). The
CSO attempts to harness the crows' ingenious behavior to find the best solution to the problem based on similar
criteria. In order to create the suggested Adap-CSO Algorithm, an enhancement is made to the traditional algorithm

CSO. Below is a model of the features of crows.

Step 1: Initialize the parameters: The optimization is done to get optimum solution and the fitness function is

taken for unconstrained multivariable function. The number of search agents(SAs) (r), population size (R), and the

S
maximum number of iterations (iter,x) are also initialized. The awareness probability (P,), and flight length ( ~™")

are chosen from the valuated benchmark functions as cited in [20]. The standard equation of the CSO is given in
Equation (21) as,

Xih = X5+ P x5, x(dE = X3, @1)

s+1
th
where, " ™nis the position of the m™ crow in N™ dimension at

th S
(S +1) iteration, Xm'" is the position of the m™

S th
crow in n™ dimension at s iteration, Pm is the random number between ‘0’ and ‘1°, 'V is the memory of V" crowin

Sth . . S . . mth Sth . .
dimension, and ~ ™" is the flight length of crow at iteration.

Step 2 : Initialize memory and position: The location and the memory of the Search Agent (SA) in n-

dimensional space is specified in Equation (22) & (23) correspondingly as,
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[c? c: ...c}
C/’ Cz .. C;?
SA=|"
R R R
K3 CR... Cc}| 22)
[ st s ...st ]
S? S22 ... S?
memory =
Sf Sk Sk

i . SR (23)

The SA have no involvements in the first iteration, therefore the search starts from the beginning at

iteration t=0.

Step 3 . Estimate fitness function: For the entire SA, the location superiority is esteemed using the
decision variable in the fitness function.

Step 4 . Develop new location: Each of the SA develops new location within the search space using the
fitness function. The state to update position is done with the value of awareness probability and
updated using the Equation (24).

Step 5 . Evaluate the possibility of new locations: The possibility of a new SA location is evaluated. The
SA updates its location if the new location is feasible; else, it remains in the current location.

Step 6 :  Estimate the objective function of new locations: The optimal value of the new location of
every SA is evaluated.

Step 7 . Updating memory: The SA updates the memory as in
Equation (24),
531 X f (X ;:nl) -is better than f (S,fm)

' Son otherwise

(24)

s+l
where, ( m'”) specifies the value of objective function. When the objective function for the
new location is best compared to the objective function for the memorized location, then the SA's

memory is updated with the predicted new location.
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Step 8 :  Validate the termination Condition: Repeat steps 4-7 until ITmax is achieved. If the termination
conditions are satisfied, the better memory location is taken as the solution of the optimization
issue.

1V. Results and Discussions

A. Simulation method

The Adap-CSO methodology for Battery/PV/Wind/ and Battery/PV/Wind/EV system was executed in MATLAB
Simulink and an examination was done. Any of the learning's significant influences is the quantity of PV, battery
and wind. The wind and PV variables have a quest space of 0 to 100 kW, and the battery variables have a quest
space of 0 to 100 kWh.

B.CollectedInformation

Figures 2, 3, and 4 depict the one-day load power, solar irradiance, and wind speed values for January. The data was

gathered from [21] according to the latitude and longitude of the area.

(i) Battery /PV/Wind/

A Battery /PV/wind/ system is the one that was designed. Results of the study depending on the suggested Adap-
CSO approach are shown in Fig. 5, which also shows that the best price and reliability results are obtained by non-
dominated measures, which are represented by red-colored dots. The figures illustrate that when the LPSP declines,
the cost increases. We must investigate more additional components, which come at a considerable cost, in order to
improve system reliability.

(ii) Deterministic behavior of EV and MG operation

Here, the only possible arrival and departure times, together with arrival SOC, are examined, and the vehicle's
behavior is expected to be predictable. In Fig. 6, the Adap-CSO calculations are shown. It appears that the red-dot
methods provide the best balance between reliability and cost. Figures 10 and 11 show the best and worst LPSP
results for the solar panel, battery, WT, and EV in this scenario. As can be observed, the battery and EV will start
charging between 1 and 8 and between 17 and 20 hours, and they will start discharging between 1 and 8 hours, when
the power exceeds the load. The EV shuts off after eight hours if the electricity exceeds or falls short of the demand.
From 8 to 17 hours, the EV is shut off when the electricity exceeds or falls short of the load, and the battery will

start charging and discharging on its own.
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Figure.2 Load Requirement Figure.3 Regional Solar Profile for the Day
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Figure. 8 Electric vehicle Departure time
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Figure.10 Simulation output for the optimal LPSP Figure.11 Simulation output for worst LPSP

Figures 7 and 8 depict that the electric vehicle leaves at 7 p.m. and arrives at 18 p.m., with a typical variation of 2
p.m. It is anticipated that the electric vehicle will reach SOC at 80% of its power. With a standard deviation of 10%
as in [22], the EV capacity operated according to the normal distribution, as presented in Figure. 9.

(iii) Sensitivity analysis
This portion provides a sensitivity analysis to investigate the impact of two crucial variables, namely wind speed and

demand based on results. As a result, by comparing them with fundamental measurements, the amounts of both

variables are adjusted to + 10%, + 20%, and + 30%. Figure 12 illustrates the impact of LPSP and LCC variation
with changing wind and load.
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Figure. 12 Effect of equlibrium region by (a) varying wind (b) varying load
V. CONCLUSION

The purpose of this research is to use the Adap-CSO Algorithm to create a single MG that uses RES in two distinct
modes, with and without the use of EV, in order to save costs and improve reliability. The capacity to store EV
mitigates the risks brought on by RES. Two approaches are used to study the impact of an EV on LPSP: (i) when the
behavior of the EV is predictable, and (ii) when the behavior of the EV is considered unpredictable. According to
the data, the EV lowers the LPSP in both situations. Additionally, sensitivity analysis was carried out to investigate
the effects of altering the wind speed and load demand on the results utilizing the suggested system. Accordingly,
outcomes illustrate that altering these values significantly affects the variables used to determine the ideal size of
Grid-connected hybrid renewable energy source. In the future, hybrid RES components will be sized effectively

using deep learning design.
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