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Abstract- Obtaining the optimum amount of different renewable energy sources to meet demand at the lowest 

feasible cost and with the highest level of reliability is the primary objectives of this paper. Two different operating 

modes are taken into consideration for this target: Battery/PV/wind/ and Battery/PV/wind/ EV. In the initial 

situation the optimal number of components and cost at different levels of dependability has been determined by the 

suggested algorithm. An EV with predictable and unpredictable condition is introduced to the system in the second 

situation, and the LPSP is calculated in both modes. EVs have been depicted to enhance system dependability. This 

study resolves the novel optimum size problem for Hybrid RESs with EVs to reduce costs and improve system 

reliability by applying the proposed Adaptive Crow Search (Aadp-CSO) algorithm. The Adap-CSO technique 

proposed here is a swarm intelligence-based solution influenced by the behavior of the crows that addresses the 

confines of the standard CSO algorithm. Additionally, the arrival SOC of the electric vehicle and the arrival and 

departure timeframes are among the uncertainties related to the EVs that are predicted using Matlab Simulink. 

According to the results, the designs of both systems are feasible; nevertheless, the first system was more efficient 

than the second since it used fewer wind units. Lastly, the impact on choice factors of increasing and decreasing 

wind speed and load demand by 10%, 20%, and 30% was investigated. 

Keywords— Wind; Solar Photo Voltaic; Electric vehicle Battery; and CSO 

                                                                         Terminologies 

Abbreviation Description 

PV Photo Voltaic 

WT Wind Turbine 

RES Renewable Energy Sources 

MG Micro-Grid 

Adap-CSO Adaptive crow search optimization 

TLBO Teaching–Learning-Based 

Optimization 

LPSP Loss Of Power Supply Probability 

SOC State Of Charge 

DG Distributed Generations 

ES Energy Storage 
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ALO Ant Lion Optimization 

EV Electric Vehicles 

RB-EMS Rule-Based Energy Management 

Strategy 

CSA Cuckoo Search Algorithm 

VAWT Vertical Axis Wind Turbine 

PSO Particle Swarm Optimization  

JLBO Jaya Learning-Based Optimization 

HAWT Horizontal Axis Wind Turbine 

REF Renewable Energy Fraction 

EGC Energy Generation Cost 

TAC Total Annual Cost 

BESS Battery Energy storage system 

 

I. INTRODUCTION  

In order to elude complications, mostly in distribution networks, RESs have established in latest periods. The Hybrid 

RES idea, which combines RES with DGs and ESSs to meet local demand with acceptable reliability, is selected to 

address the intermittent character of RESs [1]. Maximizing the sizes of assets required to meet the system's greatest 

demand while trying to lower the system's overall costs in light of technological constraints is the main problem in 

these types of systems. On the other hand, road transportation is linked to the world's excessive energy consumption, 

which results in environmental issues [2]. EVs are marketed as the greatest tools for cutting down on energy 

consumption and emissions into the atmosphere. Variable performance modification is essential for methodologies 

to produce optimal outcomes. Optimal solutions with prolonged computation periods could result from improper 

adjustment of algorithm-specific variables. It is a difficult challenge to use meta heuristic algorithms in planning, 

sizing [3], and constructing the contemporary optimization approaches of hybrid systems/microgrid systems. The 

system components that contain PV-WT-BT were sized using ant lion optimization, one of the newest meta heuristic 

algorithms [4]. To validate the obtained result from ant lion optimization [7], power flow issues are examined 

utilizing the PSO [5] and CSA [6]. In order to lower costs and improve system availability, this publication must 

introduce a fresh optimal size challenge for hybrid RESs in the context of EVs. 

          Using the MOPSO method for one residence, D. Sadeghi et al. [8] developed a novel optimum sizing issue for 

HRESs in the presence of EVs in 2022 with the goal of minimizing costs and maximizing system dependability. 

Additionally, MCS is utilized to estimate the uncertainties related to EVs, such as the number of arriving SOC and 

the dates of arrival and departure. A sensitivity study has been conducted to ascertain the effects of variations in 
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wind speed and load demand on specific criteria, and the proposed framework is applied in probabilistic and 

predictable scenarios. 

        The JLBO algorithm, a hybrid of the Jaya and TLBO algorithms, was proposed by Asif Khan and Nadeem 

Javaid [9] in 2020 as a way to optimize the sizing of a PV-WT battery system in order to service the consumer's load 

with the lowest TAC. To estimate system consistency, a maximal LPSP model is useful. The results show improved 

TAC performance, and this model provides a less costly option for all recommended LPSP measures, especially 

when compared to the WT-battery and PV-battery models. Diab, A et al. [10] proposed a modified farmland fertility 

optimization algorithm based optimal RES scaling method in 2019 that is very reliable and emits no emissions or 

pollutants. The optimal component size is determined through the optimization process in order to achieve the 

lowest cost of power output. Integrating LPSP as a cost consequence within the EGC is the system's objective. 

Compared to the current SOA and MFFA approaches, the proposed optimization methodology has produced 

superior results and converged more quickly in terms of accuracy and calculation time. 

      The Sparrow Search Optimization method, a metaheuristic optimization technique for scaling system 

components to satisfy load demand by reducing the two objective functions, such as LPSP and Cost of Electricity 

while maximizing the REF, was developed in 2023 by Mohan.H et al. [11]. Additionally, the RB-EMS is expected 

to regulate the power flow in the system. The outcomes depict that the performance of the offered scheme is 

improved in an on-grid structure. 

   Hyeon Woo et al. [12] developed a method in 2022 for determining the optimal DG unit and EVCS sizing, which 

aids in accurate power system analysis and ensures EV driver happiness. To minimize loss and harmonics, the 

optimal size of the system's liabilities problem is proposed using probabilistic second-order conic software 

development. This convex issue illustrates the unpredictability of AC power flow and can be solved in polynomial 

time. An enhanced IEEE 15 bus system is used to validate the approach, and simulations with several goals are 

conducted. Therefore, the results of the recreation show that the recommended approach is effective. 

The key effects of this paper are as :  

 An Adap-CSO algorithm is given to address the optimal sizing problem of hybrid RESs in electric vehicle 

systems. 

 The quantity of arriving SOC and the uncertainty relating to the EVs contributing to the arrival and 

departure times are modeled using the proposed algorithm. 

The manuscript is organized as follows: Section I provides a summary and review of the hybrid RES 

system.Modelling of hybrid RES is explained in Section II. The optimal sizing problem is explained in Section III 

using the suggested Adap-CSO model. The results of the planned work are shown in Section IV, and the conclusion 

of the paper is explained in Section V. 

II MODELLING OF HYBRID RES 

A. Solar PV System 

An energy system that generates electricity from sunshine without the need of mechanical or chemical processes is 

known as a photovoltaic system [8]. Stated differently, these technologies generate clean, reliable energy that is 

independent of fossil fuels. Equation (1) is used to calculate the solar array's output power, as shown below. 
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where, 
oP denotes the solar output power,  

rP signify the rated power,  represents the coefficient of reduction 

of solar surface module between 0.9 and 0.94, 
stG is the light intensity, 

cG signifies the intensity of light under 

certain conditions,  represents the temperature coefficient, 
stT is the temperature standard ,

sT is the temperature 

surface, 
lT  regards to the temperature of panel position, and NOCT  indicates the nominal operating cell temperature 

that lies between  0 and 2
0
C [11]. 

B. Wind Energy System 

Two types of wind turbines, such as VAWT and HAWT, can be distinguished [13]. The HAWT is the most popular 

kind of wind turbine for a number of reasons, such as its ability to harness significant wind energy, its ability to 

adjust the pitch angle of its blades to avoid severe windstorms, and its ability to withstand low wind [14]. Thus, the 

frame, generator with gearbox and controls, and rotor with blade are the three fundamental parts of a wind turbine. 

Therefore, Equation (3) is used to determine the power produced by the wind turbine [15] [16]. 

,
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Where, cut-out speed, rated speed and cut-in speed of the WT in m/s ,
wtP signifies the power output of wind; 

nP

represents nominal power of both turbine's; 
wN , 

coN , 
ciN and 

rN indicates the wind speed,. Figure. 1 depicts the 

Schematic illustration of the suggested hybrid RES with an EV structure. 

 

Figure. 1 Schematic diagram of the suggested hybrid RES with an electric vehicle structure 

C. Mathematical model of BESS 

Power system dependability and electrical power quality are among the problems that arise with the quick expansion 

of DG resources, particularly with regard to PV and wind turbines. In actuality, the intermittent and sinusoidal 
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behavior throws off the generation-consumption balance, which could cause problems with grid stability. The 

discrepancy between production and consumption is addressed by the storage systems [17].  

    When the total power output from WT and PV exceeds the load, the battery is said to be in a charging state, as 

determined by mathematical calculations. 

arg( ) (1 ) ( 1) ( )B ch e c

r

t
SOC t SOC t P t

C
 


                                                         (4) 

The battery's state of charge (SoC) reaches the discharging state if the total power output produced by WT and PV is 

less than the load requirement. This is determined by  

arg( ) (1 ) ( 1) ( )B disch e

r d

t
SOC t SOC t P t

C





                                                      (5) 

Where, 
rC indicates the rated capacity; SOC  signifies the charging and discharging mode,  represents the 

discharge rate ,
c is the charging mode coefficient; 

d  is the coefficient of discharging mode;
arg ( )disch eP t  specifies 

discharge power and 
arg ( )ch eP t denotes charging power, respectively. 

D. Mathematical Model of electric vehicle System 

Because of environmental concerns, EVs is being created as an alternative to internal combustion automobiles. EVs 

may meet and support network operators' objectives in addition to meeting the mobility needs of car owners. They 

are also economically viable and have a smaller environmental impact. Additionally, when additional variables are 

present, EV charging and discharging are carried out in the same manner as a regular battery such as 
EV

arrivalt , 
EV

departt
, 

EV

arrivalSOC and 
EV

departSOC
. Similar to this, the arrival time and the entry and leave times of SOC follow a normal 

distribution function; however, this study addresses a constraint for the EV's departure-time SOC [18] [19]. 
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Whereas,  
EV

arrivalt
and 

EV

departt
 signifies the EV arrival and departure time, 

EV

arrivalSOC
and 

EV

departSOC
indicate the SOC  

arrival and departure time,  and  denotes the typical deviation and mean value, and 
EVC is the capacity of 

electric vehicle  

III PROSOSED ALGORITHM FOR THE CAUSE OF OPTIMAL DESIGNING 

In the first scenario, the proposed Adap-CSO method was used to determine the optimal element counts and costs of 

battery/ PV/wind/ systems at different LPSP ranges. After the EV was linked to the model, LPSP was reassessed 

using the current EV, and its impact on LPSP was investigated. The suggested Adap-CSO algorithm is used to find 
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the starting count of ideal components and pricing for different LPSP ranges with deterministic and stochastic 

behavior of the EV in a Battery /PV/wind/EV system taking into consideration the second scenario.  

A. Objective Model  

(i) Cost: The cost may comprise the systems initialization cost (INC), replacement cost (RPC), and maintenance 

cost (MAC) that are from the related Equations (10), (11), and (12), respectively 

                                      

                                                                              (10) 
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Where, IfR  and ItR are the inflation, ,w pvN N and 
BN denotes the count of WT, PVs, and battery in the 

system respectively and interest rate, T signify the lifetime of the system;  

 (ii) Reliability: 

In the first scenario, uncertainty is assessed without taking EV into account; in the second scenario, EV is taken into 

account. 

Without considering EV 
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 Considering EV: 
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 whereas, ( )BSoC t signifies battery power and ( )EVSoC t is the  EV output power , ( )windP t indicate wind 

power, ( )pvP t represents PV power , ( )loadP t represent power of load correspondingly. 

   

 (iii) Constraints: 

 

The suggested methodology has been adjusted to meet a number of technical confines. These limitations are seen as 

the charging and discharging of battery's characteristics, power balance, and the cap on the overall number of WT, 

batteries, and PVs. 

                                                    min maxSoC SoC t SoC             (16) 

                                                      
( ) ( ) ( ) ( )pv w B lP t P t SoC t P t                           (17) 
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Equation (16) shows that the battery's charging range per hour rises above the maximal value and does not fall 

below the minimum value. The power limit balancing equation is shown in equation (17). 

                                                          MIN PV MAXN N N                                                      (18) 

                                                         MIN W MAXN N N                                      (19) 

                                                         MIN B MAXN N N                                      (20) 

As a result, the constraints on the quantity of hybrid energy storage system components are shown by eqns. (18), 

(19), and (20). 

B. Adaptive Crow search Optimization (Adap-CSO) Algorithm 

The Adap-CSO [20] is a swarm intelligence-based method for determining the optimal solutions to real-time 

problems. Additionally, the Adap-CSO expands exploration and exploitation comportment. It may converge at the 

local optimal solution, as shown by the traditional CSO constraints. The environment is the search space, the crows 

are the searchers, and every location in the environment corresponds to an appropriate optimization outcome. Faster 

convergence and escapes from local optima are two benefits of the suggested approach. CSO provides a good 

equilibrium between severity and biodiversity. Simply modifying the setting for Awareness Probability (AP). The 

CSO attempts to harness the crows' ingenious behavior to find the best solution to the problem based on similar 

criteria. In order to create the suggested Adap-CSO Algorithm, an enhancement is made to the traditional algorithm 

CSO. Below is a model of the features of crows. 

Step 1: Initialize the parameters: The optimization is done to get optimum solution and the fitness function is 

taken for unconstrained multivariable function. The number of search agents(SAs) (r), population size (R), and the 

maximum number of iterations (itermax) are also initialized. The awareness probability (PA), and flight length (

s

nmJ , ) 

are chosen from the valuated benchmark functions as cited in [20]. The standard equation of the CSO is given in 

Equation (21) as, 
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v
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where, 

1

,

s

nmX
is the position of the m

th
 crow in 

thn dimension at 
 ths 1

iteration, 

s

nmX ,  is the position of the m
th

 

crow in n
th

 dimension at s
th

 iteration, pm is the random number between ‘0’ and ‘1’, 

s

vd
is the memory of 

thv crow in 

ths dimension, and 

s

nmJ , is the flight length of 
thm  crow at 

ths  iteration.  

 

Step 2 :  Initialize memory and position: The location and the memory of the Search Agent (SA) in n-

dimensional space is specified in Equation (22) & (23) correspondingly as, 
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 The SA have no involvements in the first iteration, therefore the search starts from the beginning at 

iteration t=0. 

Step 3 :  Estimate fitness function: For the entire SA, the location superiority is esteemed using the 

decision variable in the fitness function.  

Step 4 :  Develop new location: Each of the SA develops new location within the search space using the 

fitness function. The state to update position is done with the value of awareness probability and 

updated using the Equation (24). 

Step 5 :  Evaluate the possibility of new locations: The possibility of a new SA location is evaluated. The 

SA updates its location if the new location is feasible; else, it remains in the current location. 

Step 6 :  Estimate the objective function of new locations: The optimal value of the new location of 

every SA is evaluated. 

Step 7 :  Updating memory: The SA updates the memory as in  

Equation (24), 
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where, 
 1

,

s

nmXf
 specifies the value of objective function. When the objective function for the 

new location is best compared to the objective function for the memorized location, then the SA's 

memory is updated with the predicted new location. 
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Step 8 :  Validate the termination Condition: Repeat steps 4–7 until ITmax is achieved. If the termination 

conditions are satisfied, the better memory location is taken as the solution of the optimization 

issue.  

IV. Results and Discussions 

A. Simulation method 

The Adap-CSO methodology for Battery/PV/Wind/ and Battery/PV/Wind/EV system was executed in MATLAB 

Simulink and an examination was done. Any of the learning's significant influences is the quantity of PV, battery 

and wind. The wind and PV variables have a quest space of 0 to 100 kW, and the battery variables have a quest 

space of 0 to 100 kWh. 

B.CollectedInformation  

Figures 2, 3, and 4 depict the one-day load power, solar irradiance, and wind speed values for January. The data was 

gathered from [21] according to the latitude and longitude of the area. 

(i) Battery /PV/Wind/ 

A Battery /PV/wind/ system is the one that was designed. Results of the study depending on the suggested Adap-

CSO approach are shown in Fig. 5, which also shows that the best price and reliability results are obtained by non-

dominated measures, which are represented by red-colored dots. The figures illustrate that when the LPSP declines, 

the cost increases. We must investigate more additional components, which come at a considerable cost, in order to 

improve system reliability. 

(ii) Deterministic behavior of EV and MG operation 

Here, the only possible arrival and departure times, together with arrival SOC, are examined, and the vehicle's 

behavior is expected to be predictable. In Fig. 6, the Adap-CSO calculations are shown. It appears that the red-dot 

methods provide the best balance between reliability and cost. Figures 10 and 11 show the best and worst LPSP 

results for the solar panel, battery, WT, and EV in this scenario. As can be observed, the battery and EV will start 

charging between 1 and 8 and between 17 and 20 hours, and they will start discharging between 1 and 8 hours, when 

the power exceeds the load. The EV shuts off after eight hours if the electricity exceeds or falls short of the demand. 

From 8 to 17 hours, the EV is shut off when the electricity exceeds or falls short of the load, and the battery will 

start charging and discharging on its own. 

 

                

Figure.2 Load Requirement                                                              Figure.3 Regional Solar Profile for the Day 
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                                                    Figure.4 Regional Wind Profile for the Day 

 

                          

Figure.5 Equilibrium region of battery /PV/wind                                         Figure. 6 Equilibrium region of Battery /PV/wind/ /EV  

 

 
Figure. 7 Electric vehicle Arrival time under Normal distribution function 
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Figure. 8 Electric vehicle Departure time 
under Normal distribution function                                               Figure. 9 Electric vehicle Arrival Power  

                                                                                                      under Normal distribution function 

 

 

 

 
 

Figure.10 Simulation output for the optimal LPSP                                                          Figure.11 Simulation output for worst LPSP 

Figures 7 and 8 depict that the electric vehicle leaves at 7 p.m. and arrives at 18 p.m., with a typical variation of 2 

p.m. It is anticipated that the electric vehicle will reach SOC at 80% of its power. With a standard deviation of 10% 

as in [22], the EV capacity operated according to the normal distribution, as presented in Figure. 9. 

(iii) Sensitivity analysis 

This portion provides a sensitivity analysis to investigate the impact of two crucial variables, namely wind speed and 

demand based on results. As a result, by comparing them with fundamental measurements, the amounts of both 

variables are adjusted to ± 10%, ± 20%, and ± 30%. Figure 12 illustrates the impact of LPSP and LCC variation 

with changing wind and load. 
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Figure. 12  Effect of equlibrium region by (a) varying wind (b) varying load 

V. CONCLUSION 

The purpose of this research is to use the Adap-CSO Algorithm to create a single MG that uses RES in two distinct 

modes, with and without the use of EV, in order to save costs and improve reliability. The capacity to store EV 

mitigates the risks brought on by RES. Two approaches are used to study the impact of an EV on LPSP: (i) when the 

behavior of the EV is predictable, and (ii) when the behavior of the EV is considered unpredictable. According to 

the data, the EV lowers the LPSP in both situations. Additionally, sensitivity analysis was carried out to investigate 

the effects of altering the wind speed and load demand on the results utilizing the suggested system. Accordingly, 

outcomes illustrate that altering these values significantly affects the variables used to determine the ideal size of 

Grid-connected hybrid renewable energy source. In the future, hybrid RES components will be sized effectively 

using deep learning design. 
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