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Abstract

The purpose of this article is to develop the propagation of Rayleigh waves in a non-

local thermoelastic isotropic material with double porosity whose surface is subjected to

stress free, thermally insulated/isothermal boundary conditions. Linear theory of nonlo-

cal thermoelastic material with double porosity structure is developed within the context

of Eringen’s theory of nonlocal thermoelasticity. Dual-phase-lag (DPL) model and Lord-

Shulman (LS) model of hyperbolic thermoelasticity is developed in the context of nonlocal

and double porosity. Energy density function is constructed from the basic variables, and

then, constitutive relations are derived, which are used to develop the field equations for

an isotropic homogeneous nonlocal thermoelastic material with double porosity. The vec-

tor matrix differential equation is obtained by applying the normal mode analysis to the

considered equations. Some special cases are also derived from this study which are also

compared with the existing results of the various researchers. The effects of voids and

nonlocality on different characteristics of Rayleigh waves are presented graphically. This

theory seems to be an adequate tool to describe the behaviour of granular materials like

rock, soils and manufactured porous bodies. Numerical results for the different character-

istics of Rayleigh waves like propagation speed, attenuation coefficient, specific loss and

penetration depth are computed numerically. The computer simulated results for cop-

per materials in respect of determinant of Rayleigh wave secular equation, Rayleigh wave

velocity, attenuation coefficient, specific loss and propagation speed have been presented

graphically.

Keywords: Rayleigh waves, nonlocal elasticity theory, dual-phase-Lag (DPL) and Lord-

Shulman (LS) models, double porosity.

1 Introduction

The nonlocal thermoelasticity theory has attracted the largest attention of many authors be-

cause this theory has played an important role in solving many past complications in fracture

mechanics. Eringen (1977) developed the problem of a straight-edge dislocation in nonlocal
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elasticity. Eringen (1974) employed the theory of nonlocal thermoelasticity. Eringen (1998)

founded a mixture theory of electromagnetism and superconductivity. Eringen (1972) derived

a theory of nonlocal elasticity in which constitutive equations are obtained for the nonlinear

theory, first through the use of a localised Clausius-Duhem inequality and second through a

variational statement of Gibbsian global thermodynamics. Within the framework of Eringen′s

theory of nonlocal elasticity, Kumar et al. (2021) looked into the linear theory of nonlocal

elastic material with double porosity structure. Using the fundamental variables, the energy

density function is built. Constitutive relations are then obtained and applied to generate the

field equations for an isotropic homogeneous nonlocal elastic material with double porosity.

Zhou et al. (2006) investigated the dynamic behavior of a finite crack in functionally graded

materials subjected to harmonic stress waves by means of nonlocal theory.

The concept of porous media is a flexible and essential cornerstone in the fields of applied

science and engineering. It has numerous uses in the geosciences (hydrogeology, petroleum ge-

ology, geophysics), engineering (petroleum engineering, construction engineering), biology and

biophysics, material science, filtration, and mechanics (acoustics, geomechanics, soil mechanics,

and rock mechanics). Using Nunziato and Cowin’s elastic materials with void theory (1979,

1983), Iesan and Quintanilla (2014) developed a theory of thermoelastic solids with a double

porosity structure. Puri and Cowin (1985) have derived the plane wave propagation in elastic

material with voids and found that three types of plane waves may be propagating at different

speeds.

Khalili and Selvaduri (2003) proposed a fully coupled constitutive model for thermo-hydro-

mechanical analysis in elastic media with double porosity. Ostoja-Starzewski (2009) discussed

the extension of continuum mechanics and thermodynamics to fractal porous media which are

specified by a mass fractal dimension, a surface fractal dimension, and a resolution length-scale.

Kumar et al. (2018) studied the propagation of Rayleigh waves in isotropic homogeneous ther-

moelastic half-space with a double porosity structure whose surface is subjected to stress-free

and thermally insulated isothermal boundary conditions. Isean (1986) developed a linear theory

of thermoelastic materials with voids. He examined the acceleration waves, a few equilibrium

problems, and some general theorems (such as uniqueness, reciprocal, and variational theorems)

in this theory. Singh et al. (2020) studied the propagation of time-harmonic plane waves in an

infinite thermoelastic solid medium with double porosity.

The literature on thermal effects in continuum mechanics uses a variety of parabolic and

hyperbolic ideas to explain heat conduction. The conventional thermoelasticity theory, based

on the classical Fourier law of heat conduction, suffers from the deficiency of admitting thermal

signals propagating with infinite speed, which is physically unrealistic. The conventional ther-

moelasticity theories have been generalized to remove this physically unrealistic phenomenon.

The hyperbolic type thermoelasticity (nonconventional thermoelasticity) theories removed the

unrealistic phenomena because, in hyperbolic type problems, the flow of heat is modelled with

a finite speed of thermal signals and thermoelasticity theories admitting such signals are tra-

ditionally called thermoelasticity theories with second sound. Contributions to the theory of

thermoelasticity with thermal relaxation and the temperature-rate-dependent thermoelasticity
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theory are reviewed in Chandrasekharaiah (1998).

Lord and Shulman (1967) formulated a generalized theory of thermoelasticity that is based

on the heat conduction equation of Maxwell and Cattaneo-Vernotte (CV). This generalized

thermoelasticity theory introduced one relaxation time and a parabolic type heat conduction

equation changed into a hyperbolic type equation, which is often named the LS model and

broadly used in cases of low temperature and heat flux. Green and Lindsay (1972) developed

a theory referred to as GL theory, which involves two relaxation times. Green and Naghdi

(1992, 1993) introduced three models of generalized thermoelasticity of homogeneous isotropic

materials, which are known as models of type-I, II, and III, respectively.

The next generalized thermoelasticity theory is referred to as the dual-phase-lag model

(DPL) proposed by Tzou. Tzou (1995) considered a constitutive equation to describe the lag-

ging behavior due to heat flux (τq) and temperature gradient (τT ) in the heat conduction in

thermoelastic solids. The delay time τq is interpreted as the relaxation time due to the fast-

transient effects of thermal inertia (or small-scale effects of heat transport in time), and is called

the phase-lag of the heat flux. The other delay time τT is interpreted as that caused by the

microstructural interactions (small-scale heat transport mechanisms occurring in microscale or

small-scale effects of heat transport in space). It is known as the phase-lag of the tempera-

ture gradient and is related to processes like phonon-electron interaction or phonon scattering.

The two phase-lags are regarded as the material’s inherent structural or thermal characteris-

tics. Mittal and Kulkarni (2018) discussed a dual-phase-lag model using the fractional theory

of thermoelasticity with relaxation time. A three-phase-lag model of the linearised theory of

coupled thermoelasticity was developed by Roy Choudhuri (2007) by taking into account the

heat conduction law, which takes into account the thermal displacement gradient and temper-

ature gradient among the constitutive factors. In this model, the Fourier law is modified with

three different translations for the heat flux vector, the temperature gradient, and the thermal

displacement gradient. This model is an extension of the thermoelastic models developed by

Lord-Shulman, Green-Naghdi, and Tzou. Abouelregal (2019) presented a revised thermoelastic

model of heat conduction that builds upon the Roychoudhuri model (TPL) (Choudhuri, 2007)

and incorporates a higher level of time derivative. The Taylor series expansions used in this

new model, which include three distinct phase lags for the heat flux, thermal displacement, and

temperature gradient, replace Fourier’s equation of heat conduction.

Biswas (2020a) studied surface waves in the nonlocal thermoelastic orthotropic medium in

the presence of voids. Khurana and Tomar (2016) investigated wave propagation in nonlocal

microstretch solids. Pramanik and Biswas ( 2020) innovated surface waves in a nonlocal ther-

moelastic medium with the help of a state approach system. Gupta and Mukhopadhyay (2019)

developed a study on generalized thermoelasticity proposition grounded on a nonlocal heat

conduction model with the dual-phase-lag model. Khalili (2003) studied the coupling effects

in double porosity media with the deformable matrix. Biswas and Mukhopadhyay ( 2017) pro-

posed an eigenfunction expansion system to analyze thermal shock behavior in the magneto-

thermoelastic orthotropic medium under the three-phase-lag model. Biswas ( 2020b) delved

Rayleigh waves in a nonlocal thermoelastic layer lying over a nonlocal thermoelastic half-space.
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Kalkal et al. ( 2021) studied a three-phase-lag functionally graded thermoelastic model having

double porosity and gravitational effect. Haque and Biswas ( 2021) discussed the propagation

of Rayleigh waves in a nonlocal thermoelastic layer that is lying over a nonlocal thermoelastic

half-space. Haque and Biswas ( 2024) investigated the propagation of Rayleigh waves in a non-

local thermoelastic isotropic layer that lying over a nonlocal thermoelastic isotropic half-space

in the context of the Green and Lindsay model and nonlocal elasticity theory in the presence

of the void. Sherief and Saleh ( 2005) formulated a half-space problem in the proposition of

generalized thermoelastic diffusion. Biswas ( 2021) investigated the thermal shock response

in a homogeneous orthotropic medium under the horizon of the three-phase lag model in the

presence of voids. Mondal et al. (2019) investigated waves in dual-phase-lag thermoelastic

materials with voids grounded on Eringen’s nonlocal elasticity. Sarkar and Tomar ( 2019)

discovered plane waves in nonlocal thermoelastic solids with voids.

In this paper, we analyze the constitutive relations and field equations for thermoelastic

solids with double porosity structure based on Eringen’s nonlocal theory of elasticity in spatial

form. Rayleigh wave propagation in a nonlocal isotropic medium in the presence of double

voids has been investigated. The problem is treated in the context of the dual-phase-lag model.

A differential equation is formed by employing normal mode analysis, which is then solved. To

demonstrate and compare theoretical developments, the numerical results of stress, displace-

ment, and temperature for local vs. nonlocal, voids vs. without voids, against time and distance

are presented graphically.

2 Basic relations and equations

We first build constitutive relations and field equations. Let us examine a continuum thermoe-

lastic body with double porosity, circumscribed by the surface area S and containing volume

V . Consider x = (x1, x2, x3) be any typical point of the considered body in the reference state

and x′ = (x1, x2, x3) be any surrounding point of x.

Suppose that T = θ − T0, where T0 is the temperature of the material in initial state such

that | T
T0
| << 1 and θ be the absolute temperature of the material.We assume the set of basic

variables at two neighboring point x and x′ respectively, given as follows:

X = {eij(x), ϕ(x), ϕ,i(x), ψ(x), ψ,i(x), T (x)},
X ′ = {eij(x′), ϕ(x′), ϕ,i(x

′), ψ(x′), ψ,i(x
′), T (x′)}

(1)

where eij = 1
2
(ui,j + uj,i); (i, j = 1, 2, 3) are the strain tensor within the context of linear

theory, ui are the displacement vector during deformation process, ϕ = v1(x, t) − (v1)R and

ψ = v2(x, t) − (v2)R are, respectively, the change in void volume fraction from the reference

void volume corresponding to the first and second kind of voids. A comma (,) notation in the

subscript presents the spatial derivative.

The strain energy function W for nonlocal thermoelastic materials with double voids can
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be taken as:

2W = Cijkleij(x)ekl(x
′) +mϕ(x)ϕ(x′) + pψ(x)ψ(x′) + Aijϕ,i(x)ϕ,i(x

′) + γijψ,i(x)ψ,i(x
′)

+Bij[eij(x)ϕ(x
′) + eij(x

′)ϕ(x)] + Lij[eij(x)ψ(x
′) + eij(x

′)ψ(x)] +Dijk[eij(x)ϕ,k(x
′)

+ eij(x
′)ϕ,k(x)] + Eijk[eij(x)ψ,k(x

′) + eij(x
′)ψ,k(x)] +Di[ϕ(x)ϕ,i(x

′) + ϕ(x′)ϕ,i(x)]

+ Ei[ψ(x)ψ,i(x
′) + ψ(x′)ψ,i(x)] + bij[ϕ,i(x)ψ,j(x

′) + ϕ,i(x
′)ψ,j(x)] + l[ϕ(x)ψ(x′)

+ ϕ(x′)ψ(x)] + bi[ϕ(x)ψ,i(x
′) + ϕ(x′)ψ,i(x)] + di[ϕ,i(x)ψ(x

′) + ϕ,i(x
′)ψ(x)]

− βij[eij(x)T (x
′) + eij(x

′)T (x)]− aT (x)T (x′)− γ1[ϕ(x)T (x
′) + ϕ(x′)T (x)]− γ2[ψ(x)T (x

′)

+ ψ(x′)T (x)]− ai[ϕ,i(x)T (x
′) + ϕ,i(x

′)T (x)]− hi[ψ,i(x)T (x
′) + ψ,i(x

′)T (x)],

(2)

where Cijkl,m, p, Aij, γij, Bij, Lij, Dijk, Eijk, Di, Ei, bij, l, bi, di, a, γ1, γ2, ai and hi are the consti-

tutive coefficients and prescribed function of the positions x and x′

Following Eringen (1974), the basic constitutive relations can be obtained from the following

relation:

Γ =

∫
V

[
∂W

∂X
+

(
∂W

∂X ′

)s]
dV (x′), (3)

where the superscript ‘s’ is the symmetry of that quantity with respect to the interchange of x

and x′.

Further, the set Γ = {τij, σi,−ξ, τi,−ζ, ρη} is an ordered set with the set X.

Here τij are the stress tensor, ξ and ζ represent the intrinsic equilibrated body force densities,

σi and τi denote the equilibrated stress vectors, η is the specific entropy.

Using (1) and (3), we derive the following:

τij =

∫
V

[
∂W

∂eij(x)
+

(
∂W

∂eij(x′)

)s]
dV (x′), (4)

σi =

∫
V

[
∂W

∂ϕ,i(x)
+

(
∂W

∂ϕ,i(x′)

)s]
dV (x′), (5)

−ξ =
∫
V

[
∂W

∂ϕ(x)
+

(
∂W

∂ϕ(x′)

)s]
dV (x′), (6)

τi =

∫
V

[
∂W

∂ψ,i(x)
+

(
∂W

∂ψ,i(x′)

)s]
dV (x′), (7)

−ζ =
∫
V

[
∂W

∂ψ(x)
+

(
∂W

∂ψ(x′)

)s]
dV (x′), (8)

ρη =

∫
V

[
∂W

∂T (x)
+

(
∂W

∂T (x′)

)s]
dV (x′), (9)

Inserting (2) into (4)-(9), we obtain

τij =

∫
V

[Cijkl(x,x
′)ekl(x

′) +Bij(x,x
′)ϕ(x′) + Lij(x,x

′)ψ(x′)

+Dijk(x,x
′)ϕ,k(x

′) + Eijk(x,x
′)ψ,k(x

′)− βij(x,x
′)T (x′)]dV (x′),

(10)
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σi =

∫
V

[Dkli(x,x
′)ekl(x

′) + Aij(x,x
′)ϕ,j(x

′) + bij(x,x
′)ψ,j(x

′)

+Di(x,x
′)ϕ(x′) + di(x,x

′)ψ(x′)]dV (x′),

(11)

ξ = −
∫
V

[m(x,x′)ϕ(x′) +Bij(x,x
′)eij(x

′) +Di(x,x
′)ϕ,i(x

′) + l(x,x′)ψ(x′)

+ bi(x,x
′)ψ,i(x

′)− γ1(x,x
′)T (x′)]dV (x′),

(12)

τi =

∫
V

[Ekli(x,x
′)ekl(x

′) + γij(x,x
′)ψ,j(x

′) + bij(x,x
′)ϕ,j(x

′) + Ei(x,x
′)ψ(x′)

+ bi(x,x
′)ϕ(x′)]dV (x′),

(13)

ζ = −
∫
V

[l(x,x′)ϕ(x′) + Lij(x,x
′)eij(x

′) + Ei(x,x
′)ψ,i(x

′) + p(x,x′)ψ(x′)

+ di(x,x
′)ϕ,i(x

′)− γ2(x,x
′)T (x′)]dV (x′),

(14)

ρη =

∫
V

[βij(x,x
′)eij(x

′) + a(x,x′)T (x′) + γ1(x,x
′)ϕ(x′) + γ2(x,x

′)ψ(x′)

+ ai(x,x
′)ϕ,i(x

′) + hi(x,x
′)ψ,i(x

′)]dV (x′).

(15)

For centro-symmetric, isotropic material, the constitutive coefficients are given by

Dijk = Eijk = Di = Ei = di = bi = ai = hi = 0

Cijkl(x,x
′) = λ(x,x′)δijδkl + 2µ(x,x′)δikδjl

{Aij, Bij, bij, γij, Lij, βij}(x,x′) = {α, h, b1, γ, d, β}(x,x′)δij

where λ and µ are the Lamé’s constants, the quantities α, h, b1, γ, d, γ1, γ2 and a are consti-

tutive coefficients. All the constitutive coefficients are functions of |x− x′| and attenuate with

distance because for most of the materials cohesive zone is very small. Within the cohesive

zone, the intermolecular forces drop significantly with the distance from the reference point,

i.e.,

lim
(|x−x′|)→∞

λ(|x− x′|) → 0

etc.

Thus constitutive relations (10)-(15) become

τij =

∫
V

[λ(|x− x′|)δijekk(x′) + 2µ(|x− x′|)eij(x′) + h(|x− x′|)δijϕ(x′)

+ d(|x− x′|)δijψ(x′)− β(|x− x′|)δijT (x′)]dV (x′),

(16)

σi =

∫
V

[α(|x− x′|)ϕ,i(x
′) + b1(|x− x′|)ψ,i(x

′)]dV (x′), (17)

ξ = −
∫
V

[m(|x− x′|)ϕ(x′) + h(|x− x′|)eii(x′) + l(|x− x′|)ψ(x′)

− γ1(|x− x′|)T (x′)]dV (x′),

(18)

τi =

∫
V

[b1(|x− x′|)ϕ,i(x
′) + γ(|x− x′|)ψ,i(x

′)]dV (x′), (19)
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ζ = −
∫
V

[l(|x− x′|)ϕ(x′) + d(|x− x′|)eii(x′) + p(|x− x′|)ψ(x′)

− γ2(|x− x′|)T (x′)]dV (x′),

(20)

ρη =

∫
V

[β(|x− x′|)eii(x′) + a(|x− x′|)T (x′) + γ1(|x− x′|)ϕ(x′)

− γ2(|x− x′|)ψ(x′)]dV (x′).

(21)

We assume that all the constitutive coefficients attenuate with the same degree and attain

their maxima at x = x′. The nonlocal coefficients (with unprimed notations) and local elastic

coefficients have the following relations (with primed notations) as:

{λ, µ, h, d, α, γ,m, p, l, b1, a, γ1, γ2} = {λ′, µ′, h′, d′, α′, γ′,m′, p′, l′, b′1,

a′, γ′1, γ
′
2, }G(|x− x′|,Ξ),

(22)

where G(|x − x′|,Ξ) is a nonlocal kernel expressing the effect of remote point x′ to the point

x. The parameter Ξ = ε
Θ

is nonlocal parameter, where ε = e0acl, acl being the internal

characteristic length, Θ is the external characteristic length, e0 is a material constant.

The nonlocal kernel function has the following properties:

(i )
∫
V
G(|x− x′|,Ξ)]dV (x′) = 1.

(ii) The function G attains its peak at (|x− x′| = 0) and generally decays with decreasing

(|x− x′|).
(iii) Following Eringen (1974), we have

(1− ε2∇2)G(|x− x′|,Ξ) = δ(|x− x′|), (23)

where ∇2 = ∂2

∂x2 +
∂2

∂z2
.

Operating (1 − ε2∇2) on the equations (16)-(21) and employing (22) and (23) we get the

constitutive relations for a uniform nonlocal isotropic thermoelastic material possessing double

porosity structure as follows:

(1− ε2∇2)τij = λ′δijekk(x) + 2µ′eij(x) + h′δijϕ(x) + d′δijψ(x)− β′δijT (x), (24)

(1− ε2∇2)σi = α′ϕ,i(x) + b′1ψ,i(x), (25)

(1− ε2∇2)ξ = −m′ϕ(x)− h′eii(x)− l′ψ(x) + γ′1T (x), (26)

(1− ε2∇2)τi = b′1ϕ,i(x) + γ′ψ,i(x), (27)

(1− ε2∇2)ζ = −l′ϕ(x)− d′eii(x)− p′ψ(x) + γ′2T (x), (28)

(1− ε2∇2ρη = β′eii(x) + γ′1ϕ(x) + γ′2ψ(x) + a′T (x). (29)

Here, we have used the following property of Dirac delta function:∫
f(x)δ(x− a)dx = f(a)

We propose an Eringen-type (1974) Fourier law for the nonlocal generalization of the dual-
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phase-lag model (Tzou (1995)) as

(1− ε2∇2)

(
1 + τq

∂

∂t

)
qi = −K

(
1 + τT

∂

∂t

)
T,i(x), (30)

(1− ε2∇2)ρη = β′eii(x) + γ′1ϕ(x) + γ′2ψ(x) + a′T (x). (31)

The energy equation is

qi,i = −ρT0η̇. (32)

Operating (1− ε2∇2) on the equation (32) and using (30) and (31) we get

K

(
1 + τT

∂

∂t

)
T,ii(x) =

(
1 + τq

∂

∂t

)(
β′T0ėii(x) + γ′1T0ϕ̇(x) + γ′2T0ψ̇(x) + ρCvṪ (x)

)
, (33)

where K is the thermal conductivity of the material, τT and τq are phase lags due to the temper-

ature gradient and heat flux vector respectively, qi are the components of the heat flux vector

and aT0 = ρCv and Cv is the specific heat at constant strain.

For the strain energy density function to be positive definite, the following inequalities must

hold:

µ > 0, 3λ+ 2µ > 0, p > 0,mp− l2 > 0, α > 0, αγ > b21,

(3λ+ 2µ)(mp− l2) > 3(md2 + pb2 − 2lbd) (Biswas and Mahato (2024a, 2024b)).

The equations of small motion for a uniform nonlocal thermoelastic material with double

void parameters are given (Isean and Quintanilla (2014)) as follows:

Stress equations of motion:

τij,j + ρfi = ρüi, (34)

Equilibrated stress equations of motion:

σj,j + ξ + ρg = χ1ϕ̈, (35)

τj,j + ζ + ρl̄ = χ2ψ̈, (36)

where (i,j=1,2,3); fi is the body force density, χ1 and χ2 are the equilibrated inertia per unit

mass per unit volume corresponding to the first and second kind of voids respectively, g and

l̄ are the corresponding extrinsic equilibrated body forces per unit mass corresponding to the

first and second type of voids respectively, and ρ is the mass density.

Using the equations (24)-(28) in the equations (34)-(36) and omitting prime (′) from the con-

stitutive coefficients, we obtain the governing equations in a homogeneous isotropic nonlocal

thermoelastic material with double porosity structure without body forces, extrinsic equili-
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brated body forces and heat sources as follows:

µ∇2u+ (λ+ µ)∇(∇ · u) + h∇ϕ+ d∇ψ − β∇T = (1− ε2∇2)ρü, (37)

α∇2ϕ+ b1∇2ψ − h∇ · u−mϕ− lψ + γ1T = (1− ε2∇2)χ1ϕ̈, (38)

b1∇2ϕ+ γ∇2ψ − d∇ · u− lϕ− pψ + γ2T = (1− ε2∇2)χ2ψ̈, (39)

K

(
1 + τT

∂

∂t

)
∇2T =

(
1 + τq

∂

∂t

)(
βT0∇ · u̇+ γ1T0ϕ̇+ γ2T0ψ̇ + ρCvṪ

)
, (40)

where u = (u, 0, w) is the displacement vector in nonlocal isotropic thermoelastic medium.

The coefficients h and d represent the coupling of void volume fractions of each type of

voids with the normal stress. The gradient of void volume fractions ϕ and ψ is coupled by the

parameters α and γ to the associated equilibrated stress vectors that correspond to the first

type of voids σi and the second kind of voids τi. The parameters b1 acts as a cross-coupling

between the gradient of both void volume fractions and equilibrated stresses. The parameter

m and p couple the void volume fractions ϕ and ψ with the intrinsic equilibrated body force

densities ξ and ζ respectively, also l acts as a cross-coupling between void volume fractions and

the intrinsic equilibrated body force densities, γ1 and γ2 are the thermo-void coefficients of first

kind of voids and second kind of voids respectively.

3 Solution of the problem:

To solve the equations (37)-(40), we employ normal mode analysis and consider the solution as

given below:

(u,w, ϕ, ψ, T )(x, z, t) = (ū, w̄, ϕ̄, ψ̄, T̄ )(z)exp[ik(x− ct)], (41)

where ū, w̄, ϕ̄, ψ̄ and T̄ are the amplitudes of the physical quantities, k is the wave number, c

is the phase velocity in the direction of x-axis. With the help of the equation (41), equations

(37)-(40) reduce to the following forms:

(D2 + a1)ū+ a2Dw̄ + a3ϕ̄+ a4ψ̄ + a5T̄ = 0, (42)

a7Dū+ (D2 + a6)w̄ + a8Dϕ̄+ a9Dψ̄ + a10DT̄ = 0, (43)

a15ū+ a12Dw̄ + (D2 + a11)ϕ̄+ (a13D
2 + a14)ψ̄ + a16T̄ = 0, (44)

a19ū+ a20Dw̄ + (a17D
2 + a18)ϕ̄+ (D2 + a21)ψ̄ + a22T̄ = 0, (45)

a24ū+ a23Dw̄ + a26ϕ̄+ a27ψ̄ + (D2 + a25)T̄ = 0, (46)

The condition for the existence of a non-trivial solution of the system of homogeneous
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equations (42)-(46) provides the following tenth-order differential equation:

[D10 +N1D
8 +N2D

6 +N3D
4 +N4D

2 +N5](ū, w̄, ϕ̄, ψ̄, T̄ )(z) = 0, (47)

where D ≡ d
dz
, a1, a2, a3, ..., a25, and Nn(n = 1, 2, 3, 4, 5) are provided in “Appendix”.

4 Solution of the differential equation

Assuming the regularity condition at infinity, the solution of Eqn. (47) is obtained as

(ū, w̄, ϕ̄, ψ̄, T̄ )(z) =
5∑

n=1

(hn, Bn, Cn, Dn, En)exp[−λnz]. (48)

Inserting Eqn. (48) into the equations (42)-(46), we obtain the following relations:

Bn = xnhn, Cn = ynhn, Dn = znhn, En = enhn.

From Eqn. (41) the displacement components, void volume fractions, and temperature are

obtained as:

u =
5∑

n=1

hnexp[−λnz + ik(x− ct)], (49)

w =
5∑

n=1

Bnexp[−λnz + ik(x− ct)], (50)

ϕ =
5∑

n=1

Cnexp[−λnz + ik(x− ct)], (51)

ψ =
5∑

n=1

Dnexp[−λnz + ik(x− ct)], (52)

T =
5∑

n=1

Enexp[−λnz + ik(x− ct)]. (53)

The stress components are obtained as:

τLxx =(λ+ 2µ)
∂u

∂x
+ λ

∂w

∂z
+ hϕ+ dψ − βT

=
5∑

n=1

[ik(λ+ 2µ)− λλnxn + hyn + dzn − βen]hnexp[−λnz + ik(x− ct)],
(54)

τLzz =(λ+ 2µ)
∂w

∂z
+ λ

∂u

∂x
+ hϕ+ dψ − βT

=
5∑

n=1

[ikλ− (λ+ 2µ)λnxn + hyn + dzn − βen]hnexp[−λnz + ik(x− ct)],
(55)
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τLxz = µ

(
∂u

∂z
+
∂w

∂x

)
=

5∑
n=1

[µ (ikxn − λn)]hnexp[−λnz + ik(x− ct)]. (56)

5 Boundary Conditions

We consider the following boundary conditions at z = 0 (biswas (2020b), Mahato and Biswas

(2024b)):

(1) Mechanical boundary conditions that the surface to the half-space is traction free:

(a) Vanishing of the normal component:

τzz(x, 0, t) = 0,

(1− ϵ2∇2)τzz(x, 0, t) = 0,

which gives

τLzz(x, 0, t) = 0. (57)

(b) Vanishing of the tangential component:

τxz(x, 0, t) = 0,

(1− ϵ2∇2)τxz(x, 0, t) = 0,

which gives

τLxz(x, 0, t) = 0. (58)

(2) Conditions on void volume fraction fields:

(a)

σz(x, 0, t) = 0,

(1− ϵ2∇2)σz(x, 0, t) = 0,

which gives

σL
z (x, 0, t) = 0. (59)

(b)

τz(x, 0, t) = 0,

(1− ϵ2∇2)τz(x, 0, t) = 0,

which gives

τLz (x, 0, t) = 0. (60)

(3) Thermal boundary condition:
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(i) Thermally insulated surface:

qz = 0,

(1− ϵ2∇2)qz = 0,

which gives

qLz = 0. (61)

(ii) Isothermal surface:

T (x, 0, t) = 0. (62)

6 Derivation of the frequency equations:

Substituting from the expressions of considered variables into the above boundary conditions

(57)-(62) we can obtain the following equations:

5∑
n=1

fnhn = 0, (63)

5∑
n=1

gnhn = 0, (64)

5∑
n=1

lnhn = 0, (65)

5∑
n=1

mnhn = 0, (66)

For thermally insulated surface,
5∑

n=1

rnhn = 0, (67)

For isothermal surface,
5∑

n=1

enhn = 0, (68)

Using the above equations we derive the frequency equation of Rayleigh waves in nonlocal

thermoelastic medium with double porosity under DPL model as follows:
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(a) Frequency equation of Rayleigh waves for thermally insulated surface:∣∣∣∣∣∣∣∣∣∣∣∣

f1 f2 f3 f4 f5

g1 g2 g3 g4 g5

l1 l2 l3 l4 l5

m1 m2 m3 m4 m5

r1 r2 r3 r4 r5

∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

i.e.,

f1M1 − f2M2 + f3M3 − f4M4 + f5M5 = 0, (69)

where

M1 =

∣∣∣∣∣∣∣∣∣
g2 g3 g4 g5

l2 l3 l4 l5

m2 m3 m4 m5

r2 r3 r4 r5

∣∣∣∣∣∣∣∣∣, M2 =

∣∣∣∣∣∣∣∣∣
g1 g3 g4 g5

l1 l3 l4 l5

m1 m3 m4 m5

r1 r3 r4 r5

∣∣∣∣∣∣∣∣∣, M3 =

∣∣∣∣∣∣∣∣∣
g1 g2 g4 g5

l1 l2 l4 l5

m1 m2 m4 m5

r1 r2 r4 r5

∣∣∣∣∣∣∣∣∣,

M4 =

∣∣∣∣∣∣∣∣∣
g1 g2 g3 g5

l1 l2 l3 l5

m1 m2 m3 m5

r1 r2 r3 r5

∣∣∣∣∣∣∣∣∣, M5 =

∣∣∣∣∣∣∣∣∣
g1 g2 g3 g4

l1 l2 l3 l4

m1 m2 m3 m4

r1 r2 r3 r4

∣∣∣∣∣∣∣∣∣ .
(b) Frequency equation of Rayleigh waves for isothermal surface:∣∣∣∣∣∣∣∣∣∣∣∣

f1 f2 f3 f4 f5

g1 g2 g3 g4 g5

l1 l2 l3 l4 l5

m1 m2 m3 m4 m5

e1 e2 e3 e4 e5

∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

i.e.,

f1M
′
1 − f2M

′
2 + f3M

′
3 − f4M

′
4 + f5M

′
5 = 0, (70)

where

M ′
1 =

∣∣∣∣∣∣∣∣∣
g2 g3 g4 g5

l2 l3 l4 l5

m2 m3 m4 m5

e2 e3 e4 e5

∣∣∣∣∣∣∣∣∣, M
′
2 =

∣∣∣∣∣∣∣∣∣
g1 g3 g4 g5

l1 l3 l4 l5

m1 m3 m4 m5

e1 e3 e4 e5

∣∣∣∣∣∣∣∣∣, M
′
3 =

∣∣∣∣∣∣∣∣∣
g1 g2 g4 g5

l1 l2 l4 l5

m1 m2 m4 m5

e1 e2 e4 e5

∣∣∣∣∣∣∣∣∣,

M ′
4 =

∣∣∣∣∣∣∣∣∣
g1 g2 g3 g5

l1 l2 l3 l5

m1 m2 m3 m5

e1 e2 e3 e5

∣∣∣∣∣∣∣∣∣, M
′
5 =

∣∣∣∣∣∣∣∣∣
g1 g2 g3 g4

l1 l2 l3 l4

m1 m2 m3 m4

e1 e2 e3 e4

∣∣∣∣∣∣∣∣∣ .
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7 Solution of the frequency equation

In general, wave number (k) and hence phase velocity (c) are complex quantities. If we take

c−1 = V −1 + iω−1Q,

the wave number can be expressed as k = R+ iQ where R = ω
V
in which V and Q are real. V

is the propagation speed, and Q is the attenuation coefficient of Rayleigh waves.

Specific loss

The specific loss (SL) is the ratio of energy (∆W ) dissipated in taking specimen through cycle,

to elastic energy (W ) stored in a specimen when the strain is at maximum. The specific loss is

the most direct way of defining internal friction for a material (Puri and Cowin (2017)). For a

sinusoidal surface wave of small amplitude shows that the specific loss ∆W
W

equals 4π times the

absolute value of the ratio of imaginary part of k to the real part of k (Kolsky (1963)), that is

SL =
∆W

W
= 4π

∣∣∣∣Im(k)

Re(k)

∣∣∣∣ = 4π

∣∣∣∣V Qω
∣∣∣∣ .

Penetration depth

The penetration depth is defined by

δ =
1

|Im(k)|
=

1

|Q|
.

8 Amplitudes of displacements, void volume fraction field

and temperature

Now, we derive the formulas for displacements, temperature change functions, and void volume

fraction field change functions on the surface (z = 0) for the isothermal surface during the

Rayleigh wave propagation.

On (z = 0), the isothermal surface can be expressed as follows:

u = U∗h1exp(−Qx+ ip), (71)

w = W ∗h1exp(−Qx+ ip), (72)

ϕ = Φ∗h1exp(−Qx+ ip), (73)

ψ = Ψ∗h1exp(−Qx+ ip), (74)

T = Θ∗h1exp(−Qx+ ip), (75)
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where

U∗ = f1 + f2Γ13 + f3Γ14 + f4Γ15 + f5Γ16,

W ∗ = g1 + g2Γ13 + g3Γ14 + g4Γ15 + g5Γ16,

Φ∗ = l1 + l2Γ13 + l3Γ14 + l4Γ15 + l5Γ16,

Ψ∗ = m1 + l2Γ13 +m3Γ14 + 44Γ15 +m5Γ16,

Θ∗ = e1 + e2Γ13 + e3Γ14 + e4Γ15 + e5Γ16,

Γ1 = m1 − m5

e5
e1, Γ2 = m2 − m5

e5
e2, Γ3 = m3 − m5

e5
e3, Γ4 = m4 − m5

e5
e4, Γ5 = e1

Γ4
Γ1 − e1,

Γ6 = e4
Γ4
Γ2 − e2, Γ7 = e4

Γ4
Γ3 − e3, Γ8 = −Γ1

Γ4
, Γ9 = −Γ2

Γ4
, Γ10 = −Γ3

Γ4
, Γ11 = − g1+g4Γ8+g5Γ5

g3+g4Γ10+g5Γ7
,

Γ12 = − g2+g4Γ9+g5Γ6

g3+g4Γ10+g5Γ7
, Γ13 = −f1+f3Γ11+f4(Γ8+Γ10Γ11)+f5(Γ5+Γ7Γ11)

f2+f3Γ12+f4(Γ9+Γ10Γ12)+f5(Γ6+Γ7Γ12)
, Γ14 = Γ11 + Γ12Γ13, Γ15 =

Γ8 + Γ10Γ11 + Γ13(Γ9 + Γ10Γ12), Γ16 = Γ5 + Γ7Γ11 + Γ13(Γ6 + Γ7Γ12), p = R(x− V t).

9 Path of surface particles

Following Biswas (2020b), we now discuss the motion of the surface (z=0) particles of the mod-

ified Rayleigh waves. It is also revealed that when thermomechanical coupling and interaction

of different fields are operative, the amplitude and slowness of the waves are no longer real. This

means that the wave is damped and the phase difference exists between u and w. Therefore,

on the surface (z = 0), Eqs. (71)and (72) on retaining real parts lead to

u = |U∗|H cos(p+ θ1), w = |W ∗|H cos(p+ θ2), (76)

where H = h1exp(−Qx), (θ1, θ2) = (arg(U∗), arg(W ∗)).

Eliminating p from the above equations, we get(
u

|U∗|

)2

− 2

(
u

|U∗|

)(
w

|W ∗|

)
cos(θ1 − θ2) +

(
w

|W ∗|

)2

= H2 sin2(θ1 − θ2), (77)

Here cos2(θ1−θ2)
|U∗|2|W ∗|2 − 1

|U∗|2|W ∗|2 = − 1
|U∗|2|W ∗|2 sin

2(θ1 − θ2) < 0.

Therefore, Eq. (77) represents an ellipse in the x − z plane. The squares of the semi-major

axis(A), semi-minor axis(B) and eccentricity (e) of the elliptical paths are given by

A2 =
H2

2

[
|U∗|2 + |W ∗|2 + ((|U∗|2 − |W ∗|2)2 + 4|U∗|2|W ∗|2 cos2(θ1 − θ2))

1
2

]
B2 =

H2

2

[
|U∗|2 + |W ∗|2 − ((|U∗|2 − |W ∗|2)2 + 4|U∗|2|W ∗|2 cos2(θ1 − θ2))

1
2

]
,

 (78)

e2 =
2 [(|U∗|2 − |W ∗|2)2 + 4|U∗|2|W ∗|2 cos2(θ1 − θ2)]

1
2

|U∗|2 + |W ∗|2 + [(|U∗|2 − |W ∗|2)2 + 4|U∗|2|W ∗|2 cos2(θ1 − θ2)]
1
2

.

If δ̄ is the inclination of the major axis to the wave normal then

tan(2δ̄) =
2{(tan2 θ − 1)|U∗||W ∗| cos(θ1 − θ2)− (|U∗|2 − |W ∗|2) tan θ}

(tan2 θ − 1)(|U∗|2 − |W ∗|2) + 4|U∗||W ∗| cos(θ1 − θ2)
, (79)
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where θ represents the wave’s angle of incidence.

When θ = π
2
i.e., in the case when Rayleigh wave propagation along x-axis then

δ̄ =
1

2
arctan

(
2|U∗||W ∗| cos(θ1 − θ2)

|U∗|2 − |W ∗|2

)
. (80)

From Equation (80) it is clear that in case when the wave normal and major axis are inclined at
π
4
to each other so that δ̄ = π

4
, the horizontal and vertical displacements have equal magnitudes

|U∗| = |W ∗|. Thus, it can be followed that the surface particles trace elliptical paths given by

Equation (77) in vertical planes parallel to the direction of wave propagation. The semi-axes

depend upon H = h1exp(−Qx) and hence increase or decrease exponentially.

However, for θ1 − θ2 = π
2
both A and B have the same sign and therefore, the surface

particles trace elliptical paths in a retrograde fashion in the case. Moreover, the particle paths

generate straight lines when θ1 = θ2, i.e., there is no phase difference between the functions U∗

and W ∗. where the incidence angle is θ. When a Rayleigh surface wave travels into a solid, its

constituent particles follow elliptical paths. The primary axis of the ellipse is perpendicular to

the solid’s surface, and the elliptical path’s distance reduces as the wave travels deeper into the

solid.

10 Limiting and particular cases

In this section, we derive some limiting and particular cases by considering different particular

values of the parameters:

� Lord Shulman (LS) model:

If we set, τT = 0 then we derive the Lord Shulman model.

� Coupled thermoelasticity (CT) model:

If we consider τq = τT == 0 then the present problem reduces to the case of the classical

coupled thermoelasticity model.

� Nonlocal elastic medium with double voids:

when thermoelastic coupling constants are absent i.e., β = γ1 = γ2 = a = K = 0 then

the present study reduces to the nonlocal elastic medium with double void and the paper

agrees with Kumar et al. (2021) under some suitable consideration.

� Local thermoelastic medium with double void parameters:

If we ignore nonlocal parameters in governing equations and constitutive relations i.e.

ε = 0 then, the present study reduces to a local thermoelastic medium with double voids

and without diffusion and agrees with Iesan and Quintanilla (2014), and Chirita and

Arusoaie (2021) under suitable modification.

� Nonlocal thermoelastic medium without double void parameters:

when void parameters are absent i.e., h = d = α = b1 = m = l = γ = γ1 = γ2 = p = χ1 =
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χ2 = 0 then the present study reduces to the nonlocal elastic medium without double

void.

� Nonlocal elastic medium without double void:

when thermoelastic coupling constants along with void parameters are absent i.e., β =

γ1 = γ2 = a = K = 0 and h = d = α = b1 = m = l = γ = p = χ1 = χ2 = 0 then the

present study reduces to the nonlocal elastic medium without double void.

� Local thermoelastic medium without double voids:

when void and nonlocal parameters are absent i.e., h = d = α = b1 = m = l = γ =

γ1 = γ2 = p = χ1 = χ2 = 0 and ε = 0 then the present study reduces to the local elastic

medium without double void.

� Local elastic medium without double void parameters:

when thermoelastic coupling constants along with nonlocal and void parameters are absent

i.e., β = γ1 = γ2 = a = K = 0, ε = 0 and h = d = α = b1 = m = l = γ = p = χ1 = χ2 = 0

then the present study reduces to the local elastic medium without double void.

11 Numerical results and discussion:

For numerical computations, we consider the following physical data of copper material, which

is given by Sherief et al. (2005), Mahato and Biswas (2024b) as

λ = 7.76 × 1010Nm−2, µ = 3.86 × 1010Nm−2, Cv = 3.831 × 103m2s−2K−1, K = 3.86 ×
103Ns−1K−1,ρ = 8.954× 103kgm−3, T0 = 293K, αt = 1.78× 10−5K−1, t = 1s.

Following Khalili, (2003) the double porous parameters are taken as,

h = 0.9 × 1010Nm−2, d = 0.1× 1010Nm−2, α = 1.3 × 10−5N, b1 = 0.12× 10−5N, γ = 1.1 ×
10−5N, γ1 = 0.16× 105Nm−2, γ2 = 0.219× 105Nm−2, p = 2.4× 1010Nm−2, l = 2.5× 1010Nm−2,

m = 2.3× 1010Nm−2, χ1 = 0.1456× 10−12Nm−2s2, χ2 = 0.1546× 10−12Nm−2s2.

Again in order to study the numerical computation, we take θ0 = 100, b = 0.1m, k = 1.2m−1,

τq = 2× 10−7s, τT = 1.5× 10−7s, ε = 0.009 (for nonlocal case) and ε = 0 (for local case).

In figures 1-8 we perform the graphs for propagation speed, attenuation coefficients, pene-

tration depth and specific loss with respect to wave number (k) for dual-phase-lag (DPL) and

Lord-Shulman (LS) models for isothermal surfaces.

Figure 1 illustrates the variation of propagation speed (V) with respect to wave number

(k) for the isothermal surface. The propagation speed gradually diminishes for the presence

of nonlocal parameters, and for the local parameters, it is initially showing a sudden decrease

for 100 < k < 300 and a gradual decrease for 300 < k < 900. Here the propagation speed is

smaller in the presence of nonlocal parameters for both the dual-phase-lag (DPL) model and

Lord-Shulman (LS) model. There’s a gradual decrease in propagation speed (V) for the LS

model in comparison with the DPL model with the increase of wave number (k).
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Figure 1: Propagation speed (V ) against wave number (k) (for isothermal surface)

The attenuation coefficient (Q) variation for an isothermal surface with respect to wave

number (k) is shown in Figure 2. Wave number (k) increases cause a progressive increase in

the attenuation coefficient (Q). The attenuation coefficient (Q) for the dual-phase-lag (DPL)

and Lord-Shulman (LS) models is reduced when local factors are present. When wave number

(k) increases, the attenuation coefficient (Q) for the LS model gradually rises in contrast to the

DPL model.

Figure 3 illustrates the variation of penetration depth (δ) with respect to wave number

(k) for the isothermal surface. When nonlocal parameters are included, the penetration depth

(δ) steadily decreases; when local parameters are present, the initial reduction is abrupt for

100 < k < 300 and gradual for 300 < k < 900. In this case, the penetration depth (δ) for the

Lord-Shulman (LS) and dual-phase-lag (DPL) models is smaller when nonlocal parameters are

present. As wave number (k) increases, the penetration depth (δ) for the LS model gradually

decreases in comparison to the DPL model.

Figure 4 illustrates the variation of specific loss (SL) with respect to wave number (k) for

isothermal surfaces. Here specific loss (SL) gradually increases for the nonlocal dual-phase-

lag (DPL) model and it is almost constant for the nonlocal Lord-Shulman (LS) model. The

specific loss (SL) for the dual-phase-lag (DPL) and Lord-Shulman (LS) models is reduced when

local factors are present. The difference of specific loss (SL) between DPL (nonlocal) and LS

(nonlocal) is greater with respect to the difference of specific loss (SL) between DPL (local)

and Ls (local).

Figure 5 illustrates the variation of propagation speed (V) with respect to wave number (k)

for the isothermal surface. The propagation (V) speed gradually diminishes for the presence
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Figure 2: Attenuation coefficient (Q) against wave number (k) (for isothermal surface)
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Figure 3: Penetration depth (δ) against wave number (k) (for isothermal surface)
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Figure 4: Specific loss (SL) against wave number (k) (for isothermal surface)

of void parameters and for the absence of void parameters it initially shows a sudden decrease

for 100 < k < 300 and a gradual decrease for 300 < k < 900. Here the propagation speed is

smaller in the presence of void parameters for both the models dual-phase-lag (DPL) model

and Lord-Shulman (LS) model. There’s a gradual decrease in propagation speed (V) for the

LS model in comparison with the DPL model with the increase of wave number (k).

The attenuation coefficient (Q) variation for an isothermal surface with respect to wave

number (k) is shown in Figure 6. Wave number (k) increases cause a progressive increase in

the attenuation coefficient (Q). The attenuation coefficient (Q) for the dual-phase-lag (DPL)

and Lord-Shulman (LS) models is reduced when void parameters are not present. When wave

number (k) increases, the attenuation coefficient (Q) for the LS model gradually rises in contrast

to the DPL model.

Figure 7 illustrates the variation of penetration depth (δ) with respect to wave number

(k) for the isothermal surface. When void parameters are included, the penetration depth (δ)

steadily decreases. In this case, the penetration depth (δ) for the Lord-Shulman (LS) and dual-

phase-lag (DPL) models is smaller when void parameters are present. When void parameters

are present, the penetration depth (δ) for the DPL model is higher than for the LS model.

When void parameters are absent, the penetration depth (δ) for the DPL model gradually

drops for 100 < k < 700, at which point it begins to exhibit wave characteristics. Similarly, for

the LS model, in the absence of void parameters, the penetration depth (δ) also exhibits wave

characteristics.

Figure 8 illustrates the variation of specific loss (SL) with respect to wave number (k) for

the isothermal surface. Here specific loss (SL) gradually increases for the dual-phase-lag (DPL)

model and it is almost constant for the Lord-Shulman (LS) model in the presence of void
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Figure 5: Propagation speed (V ) against wave number (k) (for isothermal surface)
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Figure 6: Attenuation coefficient (Q) against wave number (k) (for isothermal surface)
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Figure 7: Penetration depth (δ) against wave number (k) (for isothermal surface)
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Figure 8: Specific loss (SL) against wave number (k) (for isothermal surface)
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parameters.

In figures 9-16, we perform the graphs for propagation speed, attenuation coefficients, pen-

etration depth, and specific loss with respect to wave number (k) for thermoelastic models

dual-phase-lag (DPL) model and Lord-Shulman (LS) model for thermally insulated surfaces.

Figure 9 illustrates the variation of propagation speed (V) with respect to wave number (k) for

thermally insulated surfaces with voids. Initially, it shows a sudden decrease of propagation

speed (V) for 100 < k < 300 and a gradual decrease of propagation speed (V) for 300 < k < 900

for both DPL nonlocal and LS nonlocal models. Propagation speed (V) gradually decreases

with the increase of wave number (k) for LS local model.
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Figure 9: Propagation speed (V ) against wave number (k) (for thermally insulated surface)

Figure 10 illustrates the variation of attenuation coefficient (Q) to wave number (k) for

thermally insulated surfaces with voids. The attenuation coefficient (Q) for both the DPL

nonlocal and LS nonlocal models progressively rises as the wave number (k) grows. Compared

to the DPL model, the attenuation coefficient (Q) is higher for the LS model. The attenuation

coefficient (Q) increases when nonlocal factors are included.

Figure 11 illustrates the variation of penetration depth (δ) with respect to wave number

(k) for thermally insulated surfaces with voids. For DPL nonlocal and LS local and nonlocal

models, the penetration depth (δ) progressively drops as wave number (k) increases. At first,

there appears to be a sharp drop in penetration depth (δ). When comparing the DPL model

(both local and nonlocal) to the LS model, the penetration depth (δ) is larger.

Figure 12 illustrates the variation of specific loss (SL) for wave number (k) for thermally

insulated surfaces with voids. For both DPL nonlocal and LS nonlocal models, it first displays

a dramatic fall in specific loss (SL) for 100 < k < 300 and a progressive decline in specific loss
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Figure 10: Attenuation coefficient (Q) against wave number (k) (for thermally insulated surface)
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Figure 11: Penetration depth (δ) against wave number (k) (for thermally insulated surface)
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(SL) for 300 < k < 900. For the range 100 < k < 600, the specific loss (SL) for the LS nonlocal

model is higher than that of the DPL nonlocal model. Compared to the DPL nonlocal model,

the specific loss (SL) for the range 600 < k < 900 is smaller for the LS nonlocal model. When

comparing the LS local model to the DPL local model, the specific loss (SL) is lower.
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Figure 12: Specific loss (SL) against wave number (k) (for thermally insulated surface)

Figure 13 illustrates the variation of propagation speed (V) for wave number (k) for a

thermally insulated surface. Initially, it shows a sudden decrease of propagation speed (V) for

100 < k < 300 and a gradual decrease of propagation speed (V) for 300 < k < 900 for both

DPL with void and LS with void models. Propagation speed (V) gradually decreases with the

increase of wave number (k) for LS without void model. Propagation speed (V) is greater for

LS model in comparison with the DPL model for the absence of void parameters.

Figure 14 illustrates the variation of attenuation coefficient (Q) with respect to wave number

(k) for thermally insulated surfaces. The attenuation coefficient (Q) for both the DPL and LS

models progressively rises as the wave number (k) grows for the presence of void parameters.

Compared to the DPL model, the attenuation coefficient (Q) is higher for the LS model when

void parameters are included. The attenuation coefficient (Q) is greater for the DPL model

with respect to LS model in the absence of void parameters.

Figure 15 illustrates the variation of penetration depth (δ) with respect to wave number

(k) for a thermally insulated surface. For DPL with void and LS with void and without void

models, the penetration depth (δ) progressively drops as wave number (k) increases. At first,

there appears to be a sharp drop in penetration depth (δ). When comparing the DPL model

(both with void and without void) to the LS model, the penetration depth (δ) is larger.

Figure 16 illustrates the variation of specific loss (SL) with respect to wave number (k) for

thermally insulated surfaces. For both DPL with void and LS with void models, it first displays
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Figure 13: Propagation speed (V ) against wave number (k) (for thermally insulated surface)
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Figure 14: Attenuation coefficient (Q) against wave number (k) (for thermally insulated surface)
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Figure 15: Penetration depth (δ) against wave number (k) (for thermally insulated surface)
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Figure 16: Specific loss (SL) against wave number (k) (for thermally insulated surface)
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a dramatic fall in specific loss (SL) for 100 < k < 300 and a progressive decline in specific loss

(SL) for 300 < k < 900. For the range 100 < k < 600, the specific loss (SL) for the LS model is

higher than that of the DPL model in the presence of void parameters. Compared to the DPL

model, the specific loss (SL) for the range 600 < k < 900 is smaller for the LS model in the

presence of void parameters. When comparing the LS model to the DPL model, the specific

loss (SL) is lower in the absence of void parameters.

Figure 16 illustrates the variation of specific loss (SL) with respect to wave number (k) for

thermally insulated surface. For both DPL with void and LS with void models, it first displays

a dramatic fall in specific loss (SL) for 100 < k < 300 and a progressive decline in specific loss

(SL) for 300 < k < 900. For the range 100 < k < 600, the specific loss (SL) for the LS model is

higher than that of the DPL model in the precence of void parameters. Compared to the DPL

model, the specific loss (SL) for the range 600 < k < 900 is smaller for the LS model in the

precence of void parameters. When comparing the LS model to the DPL model, the specific

loss (SL) is lower in the absence of void parameters.

12 Conclusions

In this present article, the nonlocal thermoelasticity with double porosity structure has been

investigated in the context of the dual-phase-lag (DPL) model and Lord-Shulman (LS) model

based on Eringen′s nonlocal thermoelasticity theory. To solve this problem, we employ normal

mode analysis, and some special cases are discussed.

From the aspect of theoretical, numerical, and graphical observation of the present study,

the following conclusions may be inferred:

(a) Initially, the propagation speed (V) decreases strictly in the absence of nonlocal and

void parameters, while it decreases smoothly in the presence of nonlocal and void param-

eters for isothermal surfaces. For isothermal surfaces, propagation speed becomes stable

for higher values of wave number. For thermally insulated surfaces, the DPL and LS mod-

els show a dramatic fall in propagation speed (V) for 100 < k < 300 and a progressive

decline in propagation speed (V) for 300 < k < 900 due to the impact of nonlocal and

void parameters.

(b) When nonlocal parameters and void parameters are present for an isothermal surface,

the attenuation coefficient (Q) increases strictly. The attenuation coefficient is almost

constant for DPL and LS models in the absence of nonlocal and void parameters for

isothermal surfaces. When nonlocal and void parameters are present for a thermally

insulated surface, the DPL model’s attenuation coefficient (Q) is smaller than the LS

model.

(c) The penetration depth (δ) for an isothermal surface reduces in the presence of nonlocal

and void parameters for isothermal surfaces. Penetration depth decreases smoothly for

lower values of wave number and then becomes stable for higher values of wave number
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in the presence of nonlocal and void parameters for isothermal surfaces. Initially, pene-

tration depth decreases and finally becomes stable due to the impcat of nonlocal and void

parameters for thermally insulated surfaces.

(d) Specific loss increases strictly for the DPL model, while it is almost constant for

the LS model in the presence of nonlocal and double void parameters for the isothermal

surface. For thermally insulated surfaces, the value of specific loss (SL) in the presence of

nonlocal and void parameters is higher than the value of specific loss (SL) in the absence

of nonlocal and void parameters. Specific loss shows wave-like bahavior in the absence of

nonlocal and void parameters for thermally insulated surfaces.

The concept of porous media is used in many areas of applied science and engineering,

namely, filtration, mechanics (acoustics, geomechanics, soil mechanics, rock mechanics), engi-

neering (petroleum engineering, construction engineering), geosciences (hydrogeology, petroleum

geology, geophysics), biology and biophysics, and material science. Rayleigh wave propagation

has applications in geophysics, earthquake engineering, ultrasonic imaging, etc.
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Appendix

N1 =
p30+p56

p17
,

N2 =
p31+p57+p71+s10+s24

p17
,

N3 =
p32+p58+p72+s11+s25

p17
,

N4 =
p33+p59+p73+s12+s26

p17
,

N5 =
p34+p74+s13+s27

p17
,

p1 = a1+a6, p2 = a1a6, p3 = a21+a25, p4 = a21a25−a22a27, p5 = a17a25+a18, p6 = a18a25−a22a26,
p7 = a17a27 − a26, p8 = a18a27 − a26a21, p9 = a20a25 − a22a23, p10 = a20a27 − a21a23, p11 = a23a17,

p12 = a20a26 − a23a18, p13 = a1a8, p14 = a1a9, p15 = a1a10, p16 = −a23a17, p17 = 1 − a13a17,

p18 = p3+a11−p5a13−a14a17, p19 = p4+p3a11−p6a13−p5a14+p7a16, p20 = a11p4−a14p6+a16p8,
p21 = a12 − a20p13, p22 = a12p3 − p9p13 − a14a20 − a16a23, p23 = a12p4 − a14p9 + a16p10,

p24 = a12a17−a20, p25 = a12p5−a11a20+a16p16−p9, p26 = a12p6−a11p9+a16p12, p27 = a23+a13p16,

p28 = a12p7 − p10 + a11a23 + a13p12 + a14p16, p29 = a12p8 − a11p10 + a14p12, p30 = p18 + p1p17 −
a8p21+a9p24−a10p27, p31 = p2p17+p19+p1p18−a8p22−p13p21+a9p25+p14p24−a10p28−p15p27,
p32 = p20 + p1p19 + p2p18 − a8p23 − p13p22 + a9p26 + p14p25 − a10p29 − p15p28, p33 = p1p20 +

p2p19 − p13p23 + p14p26 − p15p29, p34 = p2p20, p35 = a19a25 − a22a24, p36 = a19a27 − a21a24,

p37 = a19a26 − a18a24, p38 = −a2a7, p39 = a2a8, p40 = −a2a9, p41 = a2a10, p42 = −a17a24,
p43 = a17a24, p44 = 1−a13a17, p45 = a11+p3−a13p5−a14a17, p46 = a11p3−a13p6−a14p5+a16p7,
p47 = a11p4−a14p6+a16p8, p48 = a15−a13a19, p49 = a15p3−a13p35−a14a19−a16a24, p50 = a15p4−
a14p35+a16p36, p51 = a15a17−a19, p52 = a15p5−p35−a11a19+a16p42, p53 = a15p6−a11p35+a16p37,
p54 = a15p7 − p36 + a11a24 + a13p37 − a14p43, p55 = a15p8 − a11p36 + a14p37, p56 = p38p44,

p57 = p38p45 + p39p48 + p40p51 − a13p41p43 + a24p41, p58 = p38p46 + p39p49 + p40p52 + p41p54,

p59 = p38p47 + p39p50 + p40p53 + p41p55, p60 = a19a23 − a20a24, p61 = a12 − a13a20, p62 =

a12p3−a13p9−a14a20−a16a23, p63 = a12p4−a14p9+a16p9, p64 = a15−a13a19, p65 = a15p3−a13p35−
a14a19−a16a24, p66 = a15p4−a14p35+a16p36, p67 = a15a20−a12a19, p68 = a15p9−a12p35+a16p60,
p69 = a12a24 + a13p60 − a15a23, p70 = a15p10 − a12p36 + a14p60, p71 = a3a7p61 − a3p64, p72 =

a3a7p62−a3p65−a3a6p64+a3a9p67−a3a10p69, p73 = a3a7p63−a3p66−a3a6p65+a3a9p68−a3a10p70,
p74 = −a3a6p66, s1 = a12a17−a20, s2 = a12p5−p9−a16p11−a11a20, s3 = a12p6−a11p9+a16p12, s4 =
a15a17−a19, s5 = a15p5−p35−a11a19−a16p43, s6 = a15p6−a11p35+a16p37, s7 = a15a20−a12a19,

s8 = a12a17a24 − a15a23 + p60, s9 = a15p12 − a12p37 + a11p60, s10 = a4s4 − a4a7s1, s11 = a4s5 +

a4a6s4−a4a7s2−a4a8s7+a4a10s8, s12 = a4s6+a4a6s5−a4a7s3−a4a8p68+a4a10s10, s13 = a4a6s6,

s14 = −a23 − a13p11, s15 = a12p7 + p10 − a11a23 + a13p12 − a14p11, s16 = a12p8 + a11p10 + a14p12,

s17 = a13p42 + a24, s18 = a15p7 − p36 + a11a24 + a13p37 + a14p42, s19 = a15p8 − a11p36 + a14p37,

s20 = a12a24 − a15a23 + a13p60, s21 = a15p10 − a12p36 + a14p60, s22 = p60 − a15p11 − a12p42,

s23 = a15p12−a12p37+a11p60, s24 = a5a7s14−a5s17, s25 = a5a7s15−a5s18−a6s17+a5a8s20−a5a9s22,
s26 = a5a7s16 − a5s19 − a5a6s18 + a5a8s21 − a5a9s23, s27 = −a5a6s19.

a0 = µ − ρε2k2c2, a1 = ρk2c2(1+ε2k2)−k2(λ+2µ)
a0

, ,a2 = ik(λ+µ)
a0

,a3 = ikh
a0
, a4 = ikd

a0
, a5 = −ikβ

a0
,

b0 = λ + 2µ − ρε2k2c2, a6 = ρk2c2(1+ε2k2)−µk2

b0
, a7 = ik(λ+µ)

b0
, a8 = h

b0
, a9 = d

b0
, a10 = −β

b0
, c0 =

α−χ1ε
2k2c2, a11 =

χ1k2c2(1+ε2k2)−αk2−m
c0

, a12 =
−h
c0
, a13 =

b1
c0
, a14 =

−(b1k2+l)
c0

, a15 =
−ikh
c0

, a16 =
γ1
c0
,
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d0 = γ − χ2ε
2k2c2, a17 = b1

d0
, a18 = −(b1k2+l)

d0
, a19 = −ikd

d0
, a20 = −d

d0
, a21 = χ2k2c2(1+ε2k2)−αk2−m

c0
,

a22 = γ2
d0
, τ1 = 1 − ikcτq, τ2 = 1 − ikcτT , e

′
0 = Kτ2, a23 = ikcT0βτ1

e′0
, a24 = −k2cT0βτ1

e′0
, a25 =

ikcρCvτ1
e′0

− k2, a26 =
ikcT0γ1τ1

e′0
, a27 =

ikcT0γ2τ1
e′0

.

Fn = λn[a10(λ
2
n + a1)− a5a7], Gn = (a5 − a2a10)λ

2
n + a5a6, Jn = a16(λ

2
n + a1)− a5a15,

Kn = (a5a12−a2a16)λn, Ln = a3a16−a5(λ
2
n+a11), Pn = a4a16−a5(a13λ

2
n+a14), Qn = a22(λ

2
n+

a1) − a5a19, Rn = (a5a20 − a2a22)λn, Tn = a3a22 − a5(a17λ
2
n + a18), Un = a4a22 − a5(λ

2
n + a21),

xn = −Fn

Gn
, yn = xn(PnRn−knUn)+(PnQn−JnUn)

LnUn−PnTn
, zn = −(Jn+xnkn+ynLn)

Pn
, fn = ikλ − λnxn(λ + 2µ) +

hyn + dzn − βen, gn = µ(ikxn − λn), ln = λn(αyn + b1zn), mn = λn(b1yn + γzn), rn = λnen,

en = a23xnλn−a24−a26yn−a27zn
λ2
n+a25

;(n = 1, 2, 3, 4, 5).
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