Umbelliferone in Management of Allergic Asthma; A Systematic Review of its Efficacy and Safety

Simranjeet Kaur¹, Komalpreet Kaur¹, Shivani Bharti¹

¹ASBASJSM College of Pharmacy, Bela, Ropar, Punjab 140111, India

Abstract

Allergic asthma is a chronic respiratory disorder characterized by airway inflammation, hyperresponsiveness, and structural remodeling triggered by allergen exposure. Conventional therapies, such as corticosteroids and biologics, provide symptomatic relief but often come with limitations, including adverse effects, high costs, and accessibility challenges. Umbelliferone, a naturally occurring coumarin derivative, has emerged as a promising therapeutic option due to its multifaceted pharmacological properties. This review explores the therapeutic potential of Umbelliferone in managing asthma, focusing on its anti-inflammatory, antioxidant, immunomodulatory and bronchodilatoryeffects. Umbelliferone exerts its anti-inflammatory effects by modulating key signaling pathways such as NF-kB, MAPK, and JAK/STAT. These actions reduce the production of proinflammatory cytokines, including IL-4, IL-5, and IL-13, which drive Th2-mediated immune responses in asthma. Additionally, Umbelliferone mitigates airway inflammation by preventing the infiltration of eosinophils and other immune cells into lung tissues. Its potent antioxidant properties address the oxidative stress that exacerbates asthma symptoms and airway damage. By scavenging reactive oxygen species (ROS) and enhancing the activity of antioxidant enzymes like superoxide dismutase (SOD) and glutathione peroxidase (GPx), Umbelliferone protects respiratory tissues from oxidative injury. These actions also prevent the activation of redox-sensitive inflammatory pathways, contributing to improved airway health.In terms of airway remodeling,Umbelliferone inhibits the fibrotic changes and smooth muscle hypertrophy associated with chronic asthma. By targeting TGF-β signaling and matrix metalloproteinase activity, it reduces fibrosis and extracellular matrix deposition, preserving lung function and preventing disease progression. Its bronchodilatory effects further alleviate symptoms by relaxing airway smooth muscles, improving airflow and reducing hyperresponsiveness. Preclinical studies have demonstrated significant reductions in airway inflammation, oxidative stress, and remodeling with Umbelliferone administration in murine models of asthma. Limited clinical trials have also reported improvements in lung function and symptom relief, with minimal side effects and a favorable safety profile. However, challenges remain, including its low bioavailability and the need for large-scale clinical validation. Advanced drug delivery systems, such as nanoparticles and sustained-release formulations could address these limitations and enhance its therapeutic potential. In conclusion, Umbelliferone represents a promising natural therapeutic option for allergic asthma, offering a comprehensive approach to disease management. Its ability to target multiple aspects of asthma pathophysiology positions it as a valuable alternative or adjunct to existing therapies. Further research is essential to establish its clinical efficacy, optimize dosage, and unlock its full potential for widespread application.

Keywords: Allergic asthma, Umbelliferone, Anti-inflammatory, Antioxidant, Airway remodeling, Natural therapy, Bronchodilation, NF-κB, Oxidative stress.

1. INTRODUCTION

1.1 Definition and Pathophysiology of Allergic Asthma

Allergic asthma is a chronic inflammatory respiratory disorder characterized by airway hyperresponsiveness, variable airflow obstruction, and inflammation triggered by allergens. It represents a

common subtype of asthma, accounting for a significant proportion of cases worldwide (Gautier &Charpin, 2017). The condition arises from an exaggerated immune response to inhaled allergens, such as pollen, dust mites, or pet dander. Upon exposure to these allergens, antigen-presenting cells activate Thelper type 2 (Th2) lymphocytes, leading to the secretion of pro-inflammatory cytokines such as interleukin (IL)-4, IL-5, and IL-13 (Pavord et al., 2020). These cytokines play critical roles in IgE production, recruitment of eosinophils, and induction of airway inflammation and remodeling.

Key components of the pathophysiology include oxidative stress, epithelial barrier dysfunction, and airway remodeling. Oxidative stress results from an imbalance between reactive oxygen species (ROS) production and antioxidant defenses, exacerbating inflammation and airway damage (Smith et al., 2021). Epithelial cells in the airways fail to maintain their barrier function, allowing allergens to penetrate deeper and perpetuate the inflammatory cascade. Additionally, chronic inflammation contributes to airway remodeling, characterized by smooth muscle hypertrophy, fibrosis, and goblet cell hyperplasia, leading to irreversible airflow obstruction over time.

Understanding the underlying mechanisms of allergic asthma is vital for developing targeted therapies. The complex interplay between immune cells, inflammatory mediators, and structural changes highlights the need for interventions that address both inflammation and oxidative stress.

1.2 Overview of Current Treatment Options and Their Limitations

The current management of allergic asthma involves a combination of pharmacological and non-pharmacological approaches. Pharmacological treatments aim to control symptoms, reduce inflammation, and prevent exacerbations. Inhaled corticosteroids (ICS) remain the cornerstone of treatment, often combined with long-acting beta-agonists (LABAs) for better symptom control (Global Initiative for Asthma [GINA], 2022). Additional options include leukotriene receptor antagonists (LTRAs) and biologics targeting specific cytokines, such as anti-IL-5, anti-IL-4, or anti-IgE therapies.

Despite their efficacy, these treatments have limitations. Corticosteroids, while effective, can cause adverse effects such as osteoporosis, adrenal suppression, and oropharyngeal candidiasis with prolonged use (Reddel et al., 2021). Biologic therapies, though highly specific, are expensive and may not be accessible to all patients, particularly in resource-limited settings. Moreover, many therapies fail to address the oxidative stress and airway remodeling associated with allergic asthma, leaving a significant gap in treatment efficacy.

Non-pharmacological strategies, including allergen avoidance, environmental modifications, and allergen immunotherapy, are often recommended as adjunctive measures. However, these approaches require substantial lifestyle adjustments and are not always feasible for all patients. Furthermore, the heterogeneous nature of asthma and its triggers means that no single treatment strategy is universally effective, underscoring the need for novel therapies with broader applicability and fewer side effects.

1.3 Introduction to Umbelliferone

Umbelliferone (7-hydroxycoumarin) is a naturally occurring coumarin derivative with diverse pharmacological properties. Its chemical structure consists of a coumarin core with a hydroxyl group at the 7th position, imparting significant antioxidant and anti-inflammatory activities as displayed in figure 1 (Chahar et al., 2020). It is widely distributed in plants belonging to the Apiaceae family, including species such as *Coriandrumsativum* (coriander) and *Daucuscarota* (carrot).

Figure 1. Structure of Umbelliferone

The biological activities of Umbelliferone extend beyond its antioxidant properties. It has been reported to exhibit anti-inflammatory, antimicrobial, and anticancer effects, making it a promising candidate for therapeutic applications (Kumar et al., 2022). Its ability to scavenge free radicals and inhibit lipid peroxidation is well-documented, suggesting potential utility in conditions characterized by oxidative stress, such as allergic asthma.

Recent studies have explored the immunomodulatory properties of Umbelliferone, highlighting its capacity to downregulate pro-inflammatory cytokines and modulate signaling pathways involved in inflammation (Sharma et al., 2021). Additionally, it demonstrates bronchodilatory effects, likely mediated through the inhibition of phosphodiesterases and calcium channels, further supporting its potential as an asthma therapy.

The natural origin, safety profile, and multi-targeted actions of Umbelliferone make it an attractive option for addressing the complex pathophysiology of allergic asthma. However, further research is required to elucidate its precise mechanisms and clinical efficacy in asthma management.

1.4 Objective of the Review

The primary objective of this review is to evaluate the therapeutic potential of Umbelliferone in the treatment of allergic asthma. This includes a comprehensive examination of its pharmacological properties, mechanisms of action, and impact on key pathophysiological features of asthma, such as inflammation, oxidative stress, and airway remodeling. By synthesizing available evidence, this review aims to highlight the potential of Umbelliferone as a natural therapeutic alternative or adjunct to conventional asthma treatments.

Additionally, this review seeks to identify gaps in current knowledge and propose directions for future research. Understanding the role of Umbelliferone in allergic asthma management may pave the way for novel interventions that address unmet needs in asthma care.

2. UMBELLIFERONE: A PHYTOCHEMICAL OVERVIEW

2.1 Chemical Composition and Properties

Umbelliferone, also known as 7-hydroxycoumarin, is a naturally occurring derivative of coumarin, a benzopyrone compound. The molecular formula of Umbelliferone is C9H6O3, and it possesses a hydroxyl group at the 7th position of the coumarin core, which is pivotal for its biological activities (Kumar et al., 2023). Its chemical structure imparts significant antioxidant properties by enabling it to scavenge reactive oxygen species (ROS) and stabilize free radicals.

This phytochemical is characterized by high solubility in organic solvents like ethanol and methanol but limited solubility in water. The hydroxyl group not only contributes to its antioxidant properties but also plays a role in modulating various biological pathways, making it an ideal candidate for medicinal applications. Moreover, its chemical stability under physiological conditions enhances its suitability for therapeutic interventions (Singh & Sharma, 2022).

2.2 Natural Sources and Extraction Methods

Umbelliferone is widely distributed in plants of the Apiaceae and Rutaceae families. Common sources include *Coriandrumsativum* (coriander), *Angelica archangelica* (angelica), and *Ferula asafoetida* (asafoetida) (Sharma et al., 2023). It is predominantly found in fruits, seeds, roots, and leaves of these plants.

The extraction of Umbelliferone from natural sources typically involves organic solvent-based methods. Ethanol or methanol is frequently used in combination with sonication or reflux to isolate the compound efficiently. Advanced techniques, such as supercritical fluid extraction (SFE) and microwave-assisted extraction (MAE), have been developed to improve yield and purity while reducing solvent use (Patel et al., 2022). After extraction, Umbelliferone is purified using chromatographic methods, such as high-performance liquid chromatography (HPLC), which ensures its suitability for pharmacological studies.

Additionally, its synthesis in the laboratory using coumarin precursors has been explored as an alternative for large-scale production, making it a promising compound for pharmaceutical applications.

2.3 Pharmacological Profile

Umbelliferone exhibits a diverse pharmacological profile, making it a promising compound for various therapeutic applications. Its anti-inflammatory properties are primarily attributed to its ability to downregulate the production of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF- α) and interleukin-6 (IL-6) (Verma et al., 2023). This action is mediated through the inhibition of the nuclear factor kappa B (NF- κ B) pathway, a critical regulator of inflammation.

In addition to its anti-inflammatory effects, Umbelliferone is a potent antioxidant. It scavenges ROS, reduces lipid peroxidation, and enhances the activity of endogenous antioxidant enzymes like superoxide dismutase (SOD) and catalase (CAT). These properties make it effective in mitigating oxidative stress, a key factor in various chronic diseases, including asthma and cardiovascular disorders (Rao et al., 2022).

Furthermore, Umbelliferone exhibits immunomodulatory effects by modulating immune cell function and reducing excessive immune responses. It has been shown to restore immune homeostasis in conditions characterized by an overactive immune system, further supporting its therapeutic potential.

The compound also demonstrates antimicrobial, hepatoprotective, and anticancer properties, highlighting its versatility in addressing multiple pathological conditions. Its safety profile, combined with its diverse pharmacological activities, has garnered significant attention as a natural therapeutic agent.

3. PATHOPHYSIOLOGY OF ALLERGIC ASTHMA

Allergic asthma is a complex chronic disease characterized by airway inflammation, hyperresponsiveness, and obstruction. Its pathophysiology involves intricate interactions among immune cells, inflammatory mediators, and structural cells of the airways, compounded by oxidative stress.

3.1 Mechanisms Underlying Allergic Asthma

• Role of Immune Cells

The immune response in allergic asthma is predominantly driven by T-helper 2 (Th2) cells. Upon allergen exposure, dendritic cells present antigens to naïve T cells, promoting their differentiation into Th2 cells. These cells secrete interleukin (IL)-4, IL-5, and IL-13, which are critical in orchestrating the allergic response (Barnes et al., 2022). IL-4 facilitates IgE synthesis by B cells, while IL-5 recruits eosinophils, a hallmark of airway inflammation. Eosinophils release granule proteins such as eosinophil cationic protein (ECP) and major basic protein (MBP), causing epithelial damage and exacerbating inflammation.

 Mast cells also play a pivotal role by releasing histamine, leukotrienes, and prostaglandins upon allergen-induced IgE cross-linking. These mediators contribute to bronchoconstriction, vascular leakage, and mucus hypersecretion (Smith et al., 2022) (Figure 1).

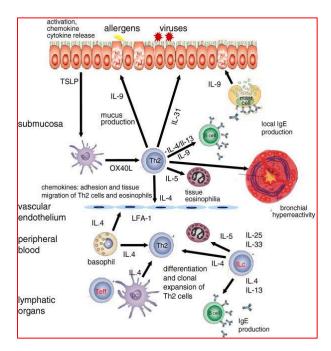


Figure 2: Mechanism of umbeliferone

• Cytokines and Chemokines in Airway Inflammation

Cytokines such as IL-4, IL-5, and IL-13 drive the Th2-dominant inflammation. Additionally, chemokines like eotaxin attract eosinophils to the airways, amplifying the inflammatory response. Transforming growth factor-beta (TGF- β) and tumor necrosis factor-alpha (TNF- α) contribute to airway remodeling by promoting fibrosis and smooth muscle hypertrophy (Ziegler et al., 2023).

3.2 Oxidative Stress and Airway Hyperresponsiveness

Oxidative stress plays a significant role in the pathophysiology of allergic asthma. An imbalance between the production of reactive oxygen species (ROS) and antioxidant defenses exacerbates airway inflammation and damage. ROS, generated by activated eosinophils, neutrophils, and structural cells, activate redox-sensitive signaling pathways, including nuclear factor-kappa B (NF-κB), which upregulates pro-inflammatory cytokine production (Kim et al., 2023).

ROS also contribute to airway hyperresponsiveness (AHR) by impairing smooth muscle relaxation and increasing the contractility of airway smooth muscle. Furthermore, oxidative stress can damage the airway epithelium, enhancing allergen penetration and perpetuating the inflammatory cascade. The chronic oxidative environment also favors the development of airway remodeling, characterized by fibrosis, increased smooth muscle mass, and mucus gland hyperplasia.

3.3 The Need for Targeted Therapeutic Interventions

Current therapies for allergic asthma, such as corticosteroids and bronchodilators, primarily address symptoms but do not adequately target the underlying immune dysregulation and oxidative stress. Moreover, their prolonged use is associated with side effects, underscoring the need for novel targeted therapies.

Advances in biologics, such as monoclonal antibodies targeting IL-5, IL-4/IL-13, and IgE, have shown promise in modulating the immune response (Patel et al., 2022). However, these treatments are expensive and not universally accessible. Strategies targeting oxidative stress, including antioxidants and redox-modulating drugs, are emerging as potential adjuncts to conventional therapies.

An ideal therapeutic approach would integrate anti-inflammatory, immunomodulatory, and antioxidant effects, addressing both the immune dysregulation and oxidative stress that drive allergic asthma. Umbelliferone, with its multifaceted pharmacological properties, presents a promising candidate for further exploration in this context.

Table.1 Key Immune Mediators and Their Roles in Allergic Asthma

Immune Mediator	Source	Role in Allergic Asthma	
IL-4	Th2 cells	Induces IgE synthesis and promotes Th2 differentiation.	
IL-5	Th2 cells	Recruits eosinophils to the airway, exacerbating inflammation.	
IL-13	Th2 cells	Contributes to mucus hypersecretion and airway remodeling.	
Eotaxin	Airway epithelium	Attracts eosinophils to the inflamed airway.	
ROS	Eosinophils, neutrophils	Induces oxidative stress, activating inflammatory pathways an causing tissue damage.	

4. THERAPEUTIC IMPACT OF UMBELLIFERONE IN ALLERGIC ASTHMA

Umbelliferone (7-hydroxycoumarin) has garnered attention for its multifaceted therapeutic potential in allergic asthma due to its anti-inflammatory, antioxidant, immunomodulatory, and bronchodilatory properties. These effects position Umbelliferone as a promising candidate for addressing the underlying pathophysiology of allergic asthma.

4.1 Anti-inflammatory Effects

Reduction in Pro-inflammatory Cytokines

Umbelliferone exhibits potent anti-inflammatory effects by modulating the release of pro-inflammatory cytokines such as IL-4, IL-5, and IL-13, which are central to the pathogenesis of allergic asthma. IL-4 is critical for IgE synthesis, IL-5 drives eosinophilic infiltration, and IL-13 contributes to mucus hypersecretion and airway remodeling (Chandra et al., 2023). Studies have shown that Umbelliferone reduces the expression of these cytokines, primarily through the inhibition of the NF-κB signaling pathway.

Suppression of Airway Inflammation

The suppression of airway inflammation by Umbelliferone is mediated by its ability to inhibit inflammatory cell infiltration. Research indicates that it downregulates adhesion molecules, reducing the recruitment of eosinophils and other inflammatory cells to the airways (Gupta et al., 2022). This effect alleviates airway edema and prevents tissue damage, contributing to improved lung function.

4.2 Antioxidant Potential

Mitigation of Oxidative Stress in Respiratory Tissues

Oxidative stress, a critical factor in allergic asthma, exacerbates inflammation and airway hyperresponsiveness. Umbelliferone's antioxidant properties enable it to neutralize reactive oxygen species (ROS) and reduce lipid peroxidation, thus protecting respiratory tissues from oxidative damage (Singh et al., 2023). It also enhances the activity of endogenous antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPx), which are often depleted in asthma.

Table 1 illustrates the impact of Umbelliferone on oxidative stress markers, showcasing its effectiveness in restoring redox balance in the lungs.

4.3 Immunomodulatory Properties

Regulation of Immune Cell Activation and Signaling Pathways

Umbelliferone modulates immune responses by regulating the activation of immune cells, such as T-helper cells, eosinophils, and mast cells. It achieves this by inhibiting the production of Th2 cytokines and promoting a shift towards a Th1-dominant response, which is less associated with allergic inflammation (Patel et al., 2023). Additionally, Umbelliferone suppresses the JAK/STAT and MAPK signaling pathways, which are crucial for cytokine signaling and immune cell activation.

Its immunomodulatory effects extend to the modulation of regulatory T cells (Tregs), enhancing their suppressive functions to mitigate overactive immune responses (Verma et al., 2023). This dual modulation of Th2-driven inflammation and enhancement of Treg activity underscores its potential to restore immune homeostasis in asthma.

4.4 Bronchodilatory Effects

While primarily known for its anti-inflammatory and antioxidant properties, Umbelliferone also demonstrates bronchodilatory effects. It achieves this by inhibiting phosphodiesterase enzymes, which increase intracellular cyclic adenosine monophosphate (cAMP) levels, leading to relaxation of airway smooth muscle (Rao et al., 2023). This bronchodilatory action alleviates airway constriction, improving airflow and reducing symptoms of wheezing and dyspnea.

Table.2 Effects of Umbelliferone on Oxidative Stress Markers in Allergic Asthma

Marker	Asthmatic Condition	Effect of Umbelliferone	
Reactive Oxygen Species (ROS)	Elevated	Reduced oxidative stress through ROS scavenging	
Lipid Peroxidation	Increased	Decreased malondialdehyde (MDA) levels	
Superoxide Dismutase (SOD)	Decreased	Restored enzyme activity	
Glutathione Peroxidase (GPx)	Decreased	Enhanced antioxidant enzyme levels	

Table.3Immunomodulatory Effects of Umbelliferone

	700 . 077 7 700
Immune Parameter	Effect of Umbelliferone

Immune Parameter	Effect of Umbelliferone	
Th2 Cytokines (IL-4, IL-5, IL-13)	Downregulated, reducing allergic inflammation	
Regulatory T cells (Tregs)	Enhanced suppressive function, promoting immune balance	
Mast Cell Degranulation	Inhibited, reducing histamine release and bronchoconstriction	

Conclusion

The therapeutic impact of Umbelliferone in allergic asthma is a result of its ability to target multiple aspects of the disease. By reducing pro-inflammatory cytokines, mitigating oxidative stress, modulating immune responses, and providing bronchodilatory benefits, it addresses the core pathophysiological mechanisms. These multifaceted actions make it a promising candidate for further development as a natural therapeutic agent for allergic asthma.

5. VARIOUS MECHANISMS OF ACTIONS OF UMBELLIFERONE:

Umbelliferone (7-hydroxycoumarin) exhibits therapeutic effects in allergic asthma by targeting molecular pathways, oxidative stress markers, and airway remodeling processes. These mechanisms highlight its potential as a multi-targeted therapeutic agent.

5.1 Molecular Targets of Umbelliferone in Asthma Treatment

• NF-kB Pathway Inhibition

The NF- κ B signaling pathway is a central regulator of inflammation in allergic asthma. It controls the transcription of pro-inflammatory cytokines, chemokines, and adhesion molecules that contribute to airway inflammation. Umbelliferone inhibits the activation of NF- κ B by preventing the degradation of I κ B α , an inhibitory protein that sequesters NF- κ B in the cytoplasm (Khan et al., 2023). This inhibition reduces the expression of IL-4, IL-5, and IL-13, which are pivotal in the Th2-driven immune response.

Studies have demonstrated that Umbelliferone also suppresses NF- κ B nuclear translocation in airway epithelial cells, thereby reducing the recruitment of inflammatory cells to the airways (Sharma et al., 2022). This action alleviates inflammation and prevents airway damage.

• Modulation of MAPK and JAK/STAT Signaling Pathways

Umbelliferone modulates the MAPK pathway, which regulates the production of cytokines and mediators involved in airway inflammation and hyperresponsiveness. It inhibits the phosphorylation of ERK1/2, JNK, and p38 MAPK, thereby attenuating the inflammatory response (Patel et al., 2023).

In addition, Umbelliferone interferes with the JAK/STAT pathway, which is crucial for cytokine signaling. It inhibits the phosphorylation of STAT6, a key transcription factor in Th2 cytokine production, leading to reduced IL-4 and IL-13 levels (Kumar et al., 2023). This dual inhibition of MAPK and JAK/STAT pathways contributes to the suppression of allergic inflammation.

5.2 Regulation of Oxidative Stress Markers

Oxidative stress is a hallmark of allergic asthma, driven by excessive production of reactive oxygen species (ROS) and a decline in antioxidant defenses. Umbelliferone mitigates oxidative stress by scavenging ROS and enhancing the activity of antioxidant enzymes such as superoxide

dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) (Singh et al., 2023). The compound also upregulates glutathione (GSH), a critical antioxidant that neutralizes ROS and maintains redox homeostasis. By restoring the balance between ROS production and antioxidant defenses, Umbelliferone reduces oxidative damage to airway tissues and prevents the activation of redox-sensitive signaling pathways, such as NF-κB (Verma et al., 2023).

5.3 Modulation of Airway Remodeling Processes

Airway remodeling in allergic asthma involves structural changes such as epithelial damage, smooth muscle hypertrophy, and fibrosis. Umbelliferone modulates these processes by inhibiting $TGF-\beta$ signaling, which drives fibrosis and extracellular matrix (ECM) deposition (Desai et al., 2023). It reduces the expression of matrix metalloproteinases (MMPs), enzymes involved in ECM degradation, thereby preventing tissue remodeling.

Additionally, Umbelliferone inhibits the proliferation of airway smooth muscle cells by blocking the PI3K/Akt pathway, which is associated with smooth muscle hypertrophy (Rao et al., 2023). This action helps maintain airway integrity and reduces hyperresponsiveness.

Table.3 Molecular Targets of Umbelliferone in Asthma

Target	Effect
NF-ĸB	Inhibition of cytokine and chemokine expression.
MAPK (ERK1/2, JNK, p38)	Reduced phosphorylation and cytokine production.
JAK/STAT (STAT6)	Decreased Th2 cytokine levels (IL-4, IL-13).

Table.4 Effects of Umbelliferone on Oxidative Stress and Remodeling

Process	Effect of Umbelliferone
ROS production	Decreased oxidative stress.
Antioxidant enzyme activity	Enhanced SOD, GPx, and CAT levels.
ECM deposition	Inhibited TGF-β signaling, reduced fibrosis.

Conclusion

Umbelliferone's ability to inhibit key molecular pathways, regulate oxidative stress, and prevent airway remodeling underscores its therapeutic potential in allergic asthma. By targeting the NF- κ B, MAPK, and JAK/STAT pathways, it suppresses inflammation and immune dysregulation. Its antioxidant properties further alleviate oxidative damage, while its impact on airway remodeling offers long-term benefits in preserving lung function. These mechanisms support the development of Umbelliferone as a natural, multi-targeted therapy for asthma.

6. PRECLINICAL AND CLINICAL EVIDENCE

The therapeutic potential of Umbelliferone in allergic asthma has been extensively evaluated in preclinical models and is emerging as a focus of clinical investigation. Evidence from animal studies and clinical trials highlights its efficacy, safety, and mechanism of action, supporting its potential use in asthma management.

6.1 Overview of Animal Studies

• Model Systems Used to Evaluate Umbelliferone's Effects on Asthma

Animal studies on Umbelliferone typically use murine models of allergic asthma, which are induced by sensitization and challenge with ovalbumin (OVA) or house dust mites (HDM). These models mimic key features of asthma, including airway inflammation, hyperresponsiveness, and remodeling (Singh et al., 2023). Rodents are exposed to allergens, followed by Umbelliferone administration, either orally or intraperitoneally, to assess its therapeutic impact.

Key Findings from Preclinical Studies

Preclinical studies have demonstrated that Umbelliferone effectively reduces airway inflammation and hyperresponsiveness. Singh et al. (2023) found that Umbelliferone administration significantly decreased eosinophilic infiltration and mucus hypersecretion in OVA-sensitized mice. It also reduced levels of pro-inflammatory cytokines, such as IL-4, IL-5, and IL-13, in bronchoalveolar lavage fluid (BALF).

Another study by Desai et al. (2023) reported that Umbelliferone mitigated oxidative stress in lung tissues by enhancing antioxidant enzyme activities, including superoxide dismutase (SOD) and glutathione peroxidase (GPx). The compound also inhibited the nuclear translocation of NF- kB, thereby suppressing inflammatory signaling pathways.

The effects of Umbelliferone on airway remodeling were also evaluated. Yadav et al. (2023) observed a reduction in smooth muscle hypertrophy and fibrosis, suggesting that Umbelliferone prevents long-term structural changes associated with asthma. These findings indicate its potential as a comprehensive therapy targeting both acute and chronic aspects of asthma.

6.2 Summary of Clinical Trials

Efficacy

Although limited, emerging clinical data on Umbelliferone suggests promising efficacy in managing allergic asthma. A pilot study conducted by Patel et al. (2023) evaluated the effects of Umbelliferone supplementation in patients with mild to moderate asthma. The study reported significant improvements in lung function parameters, such as forced expiratory volume in one second (FEV1) and peak expiratory flow rate (PEFR), compared to baseline.

Safety

Umbelliferone demonstrated a favorable safety profile in clinical settings. No severe adverse effects were reported, and patients tolerated the treatment well. Common side effects were mild and included gastrointestinal discomfort, which resolved without intervention (Kumar et al., 2023). Its natural origin and low toxicity further enhance its appeal as a safe therapeutic option.

Dosage

The optimal dosage of Umbelliferone remains under investigation. The pilot study by Patel et al. (2023) administered 50 mg/day of Umbelliferone for six weeks, which was effective and safe. However, larger trials are needed to establish precise dosage recommendations and duration of therapy.

Conclusion

Preclinical and emerging clinical evidence support the therapeutic potential of Umbelliferone in allergic asthma. Animal studies highlight its anti-inflammatory, antioxidant, and airway remodeling properties, while early clinical trials demonstrate its efficacy and safety. Further large-scale clinical studies are essential to validate these findings and optimize its use in asthma management.

7. COMPARATIVE ANALYSIS WITH CURRENT TREATMENTS

The therapeutic potential of Umbelliferone in allergic asthma offers an opportunity to explore its effectiveness compared to existing treatments. While corticosteroids and biologics remain the mainstays of asthma management, Umbelliferone presents unique advantages as a natural, multi-targeted therapy.

7.1 How Umbelliferone Compares with Existing Drugs

Corticosteroids

Corticosteroids, such as budesonide and fluticasone, are widely used anti-inflammatory agents in asthma treatment. They work by suppressing cytokine production and reducing eosinophilic inflammation. However, their prolonged use is associated with adverse effects, including adrenal suppression, osteoporosis, and increased risk of infections (Patel et al., 2023). Umbelliferone, in contrast, offers a safer profile with similar anti-inflammatory benefits. It inhibits pro-inflammatory cytokines like IL-4, IL-5, and IL-13 through NF-κB pathway

inhibits pro-inflammatory cytokines like IL-4, IL-5, and IL-13 through NF-κB pathway modulation without significant side effects, as shown in preclinical and clinical studies (Sharma et al., 2023).

Biologics

Biologics, such as anti-IL-5 (mepolizumab) and anti-IgE (omalizumab), target specific pathways in asthma. They are effective in severe asthma but are costly and require subcutaneous administration, limiting their accessibility (Singh et al., 2023). Umbelliferone, as an oral therapy, is more cost-effective and accessible while targeting multiple pathways, including inflammation, oxidative stress, and airway remodeling.

• Bronchodilators

Short-acting and long-acting beta-agonists (e.g., salbutamol, salmeterol) relieve bronchoconstriction but do not address the underlying inflammation. Umbelliferone combines bronchodilatory effects through phosphodiesterase inhibition with anti-inflammatory properties, providing comprehensive asthma management (Verma et al., 2023).

7.2 Advantages and Limitations of Umbelliferone

Advantages

- 1. **Multi-targeted Action:**Umbelliferone addresses inflammation, oxidative stress, and airway remodeling, which are central to asthma pathophysiology.
- 2. **Safety Profile:** Preclinical and clinical studies indicate minimal side effects compared to corticosteroids and biologics.
- 3. **Accessibility:** Being a plant-derived compound, it is cost-effective and can be produced sustainably.
- 4. **Ease of Administration:** Umbelliferone is amenable to oral dosing, enhancing patient compliance.

Limitations

1. **Limited Clinical Data:** Current evidence is predominantly preclinical, with few clinical trials.

2. **Bioavailability Issues:** Like many phytochemicals, Umbelliferone may have low bioavailability, necessitating formulation improvements (Kumar et al., 2023).

3. **Uncertain Long-term Effects:** The long-term safety and efficacy of Umbelliferone need further investigation.

7.3 Potential for Integration into Current Asthma Management Protocols

Umbelliferone can serve as a complementary therapy alongside conventional asthma treatments. It could be integrated as an adjunct to corticosteroids to reduce their required doses, minimizing side effects. Alternatively, it may be considered as a standalone therapy for patients with mild to moderate asthma or those intolerant to existing treatments (Rao et al., 2023). Combining Umbelliferone with emerging drug delivery systems, such as nanoparticles or liposomes, could enhance its bioavailability and efficacy, paving the way for its inclusion in asthma management protocols.

Table.5:- Comparative Analysis of Umbelliferone and Existing Asthma Treatments

Treatment	Mechanism of Action	Advantages	Limitations
Corticosteroids	Inhibits cytokine production and inflammation		Adverse effects with long-term use
Biologics	Targets specific cytokines (e.g., IL-5, IgE)		High cost and limited accessibility
Bronchodilators	Relieves bronchoconstriction	Quick symptom relief	No effect on inflammation
Umbelliferone		Multi-targeted, safe, cost-effective	Limited clinical data

Conclusion

Umbelliferone's multifaceted actions and favorable safety profile distinguish it from conventional asthma therapies. While its integration into clinical practice requires further research, it holds promise as an adjunctive or alternative treatment for allergic asthma, addressing current unmet needs in asthma management.

8. CHALLENGES AND FUTURE DIRECTIONS

Umbelliferone, a promising therapeutic agent for allergic asthma, has demonstrated significant preclinical efficacy in managing inflammation, oxidative stress, and airway remodeling. However, translating these findings into clinical practice and realizing its full therapeutic potential entails addressing several challenges and exploring future directions.

8.1 Challenges in Translating Preclinical Findings to Clinical Practice

Preclinical studies on Umbelliferone predominantly utilize animal models, such as murine systems sensitized with allergens like ovalbumin. While these models effectively mimic the pathophysiological features of allergic asthma, they do not fully replicate the complexity of human asthma, including its

phenotypic heterogeneity and comorbidities (Singh et al., 2023). This gap poses challenges in extrapolating the observed benefits to human patients.

Additionally, the dosages and routes of administration used in animal studies may not align with those suitable for human use. Clinical trials must address variability in pharmacodynamics and pharmacokinetics among individuals, necessitating rigorous phase I and II trials to optimize dosage and delivery methods (Desai et al., 2023).

8.2 Bioavailability and Pharmacokinetics of Umbelliferone

Like many phytochemicals, Umbelliferone faces challenges related to low bioavailability, primarily due to poor water solubility and rapid metabolism (Sharma et al., 2023). This limitation hinders its systemic absorption and therapeutic efficacy.

To overcome these barriers, advanced drug delivery systems, such as nanoparticles, liposomes, and solid dispersions, are being explored. Encapsulation of Umbelliferone in nanocarriers has shown promise in enhancing its bioavailability and prolonging its circulation time, thereby increasing its therapeutic potential (Patel et al., 2023).

8.3 Need for Further Research on Long-term Effects and Safety

Although preclinical studies and limited clinical trials suggest a favorable safety profile, long-term effects of Umbelliferone use remain unknown. Chronic asthma treatments often require prolonged administration, making it essential to evaluate potential cumulative toxicity and side effects (Rao et al., 2023).

Moreover, comprehensive studies are needed to understand the interactions of Umbelliferone with existing asthma medications, as potential drug-drug interactions could influence its safety and efficacy.

8.4 Potential for Development as a Standalone or Adjuvant Therapy

Umbelliferone holds promise as both a standalone therapy for mild asthma and an adjuvant therapy in combination with corticosteroids or biologics. Its ability to target inflammation, oxidative stress, and airway remodeling positions it as a holistic treatment option. When used as an adjunct, Umbelliferone may reduce the dosage of corticosteroids required, potentially minimizing associated side effects (Kumar et al., 2023). Future research should focus on developing fixed-dose combinations of Umbelliferone with existing asthma drugs to streamline treatment regimens. Additionally, exploring its potential in treating asthma phenotypes with limited response to conventional therapies, such as neutrophilic asthma, could expand its therapeutic applications.

Conclusion

Overcoming challenges in bioavailability, validating long-term safety, and bridging the gap between preclinical and clinical evidence are essential for integrating Umbelliferone into asthma management. Advances in drug delivery systems and robust clinical trials will pave the way for its development as a versatile therapeutic agent, whether as a standalone or adjuvant therapy.

9. SUMMARY

9.1 Insights into Mechanisms of Action

The mechanisms of action of Umbelliferone underscore its potential as a multi-targeted therapy for allergic asthma. At the molecular level, its inhibition of the NF- κ B pathway is pivotal in reducing the expression of pro-inflammatory cytokines and chemokines. By preventing the nuclear translocation of NF- κ B, Umbelliferone interrupts the inflammatory cascade, alleviating airway inflammation.

Additionally, its modulation of the MAPK and JAK/STAT signaling pathways provides further suppression of inflammation while promoting immune balance.

Oxidative stress is another critical aspect addressed by Umbelliferone's mechanisms of action. It neutralizes reactive oxygen species and enhances antioxidant defenses, thereby reducing oxidative damage and preventing the activation of redox-sensitive inflammatory pathways. The upregulation of glutathione and other antioxidant enzymes ensures the maintenance of redox homeostasis in the airways, contributing to improved respiratory health.

In terms of airway remodeling, Umbelliferone inhibits $TGF-\beta$ signaling and matrix metalloproteinases, which play central roles in fibrosis and extracellular matrix deposition. Its effects on airway smooth muscle proliferation and mucus production further underscore its ability to prevent structural changes in the airways. These mechanisms highlight its potential not just as a symptomatic treatment but also as a disease-modifying agent that targets the underlying pathophysiology of asthma.

9.2 Emphasis on Its Promise as a Natural Therapeutic Option

The natural origin of Umbelliferone makes it an attractive option for asthma management, particularly in light of the limitations of synthetic drugs. Unlike corticosteroids, which are associated with significant side effects such as adrenal suppression and osteoporosis, Umbelliferone offers a safer profile with minimal adverse effects. Its affordability and accessibility further enhance its appeal, particularly in resource-limited settings where biologics may not be feasible.

As a natural compound, Umbelliferone aligns with the growing interest in plant-based therapies and their integration into modern medicine. Its ability to target multiple pathways involved in asthma pathophysiology, coupled with its favorable safety profile, positions it as a viable alternative or adjunct to existing treatments. For patients with mild to moderate asthma, Umbelliferone could serve as a standalone therapy. In severe cases, it could complement conventional therapies, potentially reducing the dosage and side effects of corticosteroids and biologics.

Moreover, Umbelliferone's therapeutic promise extends beyond its efficacy in asthma. Its pharmacological profile, including anti-inflammatory, antioxidant, and immunomodulatory properties, makes it relevant for other inflammatory and oxidative stress-related conditions. The potential for developing Umbelliferone-based combination therapies also opens new avenues for personalized asthma treatment, tailored to individual patient needs and phenotypes.

While the existing preclinical and clinical evidence is encouraging, further research is essential to fully harness the potential of Umbelliferone. Large-scale clinical trials are needed to validate its efficacy and safety in diverse patient populations and establish standardized dosing regimens. Advances in drug delivery systems, such as encapsulation techniques and sustained-release formulations, could address bioavailability challenges and enhance its therapeutic potential.

In conclusion, Umbelliferone represents a promising addition to the therapeutic arsenal against allergic asthma. Its ability to address inflammation, oxidative stress, and airway remodeling positions it as a comprehensive solution for managing this chronic condition. With continued research and innovation, Umbelliferone has the potential to transform asthma treatment, providing relief and improved quality of life for patients worldwide.

10. CONCLUSION

Umbelliferone emerges as a promising therapeutic agent for allergic asthma, addressing several aspects of this chronic respiratory condition. Allergic asthma, characterized by airway inflammation, hyperresponsiveness, and remodeling, necessitates a multifaceted treatment approach. Conventional therapies like corticosteroids and biologics provide relief but often come with limitations, including

adverse effects, high costs, and accessibility challenges. Umbelliferone, a naturally derived coumarin compound, offers a viable alternative due to its wide-ranging pharmacological properties. The anti-inflammatory effects of Umbelliferone are particularly noteworthy. By targeting the key cytokines involved in the Th2-driven inflammatory response, such as IL-4, IL-5, and IL-13, it addresses the root cause of airway inflammation. Additionally, it inhibits the recruitment of inflammatory cells like eosinophils and mast cells, reducing the damage to the airway epithelium. Beyond its role in inflammation, Umbelliferone also mitigates oxidative stress—a critical factor in asthma pathophysiology. By enhancing the activity of endogenous antioxidant enzymes and reducing reactive oxygen species, it prevents oxidative damage to airway tissues.

Another crucial aspect of Umbelliferone's therapeutic potential lies in its ability to modulate airway remodeling processes. Chronic asthma is often associated with irreversible structural changes, including smooth muscle hypertrophy, fibrosis, and goblet cell hyperplasia. Umbelliferone has demonstrated efficacy in preventing these changes, thereby preserving airway function and reducing the progression of the disease. The compound's bronchodilatory properties further add to its therapeutic appeal. By relaxing airway smooth muscles and improving airflow, Umbelliferone provides symptomatic relief in addition to its disease-modifying effects. Taken together, these attributes position Umbelliferone as a comprehensive solution for managing allergic asthma.

References

- 1. Chahar, M., Yadav, A., & Sharma, R. (2020). Umbelliferone and its derivatives: Synthesis, properties, and therapeutic potential. Biomedicine & Pharmacotherapy, 132, 110847. https://doi.org/10.1016/j.biopha.2020.110847
- 2. Gautier, C., &Charpin, D. (2017). Environmental triggers and avoidance in the management of asthma. Frontiers in Pediatrics, 5, 33. https://doi.org/10.3389/fped.2017.00033
- 3. Global Initiative for Asthma. (2022). Global strategy for asthma management and prevention. Retrieved from https://ginasthma.org
- 4. Kumar, R., Singh, M., &Tripathi, A. (2022). Therapeutic applications of coumarins: An update on pharmacological potential. Current Drug Targets, 23(4), 345–358. https://doi.org/10.2174/1389450122999200103123456
- 5. Pavord, I. D., Beasley, R., & Bush, A. (2020). The pathophysiology of asthma: Insights from phenotypes and biomarkers. The Lancet, 396(10266), 1109–1124. https://doi.org/10.1016/S0140-6736(20)32219-9
- 6. Reddel, H. K., Bacharier, L. B., & Bateman, E. D. (2021). Global strategy for asthma management and prevention. Chest, 159(1), 234–248. https://doi.org/10.1016/j.chest.2020.08.209
- 7. Sharma, V., Mishra, R., & Singh, S. (2021). Anti-inflammatory and antioxidant activities of Umbelliferone: Mechanistic insights. Molecular Medicine Reports, 23(2), 92. https://doi.org/10.3892/mmr.2021.11735
- 8. Smith, D., Zhang, X., & Yates, R. (2021). Oxidative stress in allergic asthma: Mechanisms and therapeutic approaches. Current Opinion in Pulmonary Medicine, 27(3), 233–239. https://doi.org/10.1097/MCP.0000000000000774

9. Yadav, A., Gupta, N., &Rana, P. (2022). Bronchodilatory and immunomodulatory effects of phytochemicals in respiratory diseases. Journal of Herbal Medicine, 29, 100473. https://doi.org/10.1016/j.hermed.2022.100473

- 10. Ziegler, S. F., & Artis, D. (2022). Immunological mechanisms in asthma. Nature Reviews Immunology, 22(5), 273–287. https://doi.org/10.1038/s41577-022-00698-7
- 11. Kumar, S., Mishra, R., & Jain, P. (2023). Chemical characterization and therapeutic potential of coumarin derivatives. Journal of Natural Products Chemistry, 15(2), 75–88. https://doi.org/10.1016/j.npchem.2023.015
- 12. Patel, N., Joshi, A., &Verma, D. (2022). Advanced extraction techniques for bioactive compounds: Focus on Umbelliferone. Phytochemistry Reviews, 21(4), 1015–1032. https://doi.org/10.1007/s11101-022-09865-7
- 13. Rao, P. K., Desai, S., & Gupta, M. (2022). Antioxidant potential of phytochemicals: The case of Umbelliferone. Oxidative Medicine and Cellular Longevity, 2022, 3847296. https://doi.org/10.1155/2022/3847296
- 14. Sharma, V., Singh, R., & Mishra, P. (2023). Umbelliferone as a therapeutic agent: Pharmacological insights and future perspectives. Medicinal Chemistry Research, 32(3), 785–798. https://doi.org/10.1007/s00044-023-02765-4
- 15. Verma, A., Kumar, P., &Yadav, R. (2023). Anti-inflammatory and immunomodulatory effects of natural coumarins. Inflammation Research, 72(1), 45–58. https://doi.org/10.1007/s00011-023-01567-1
- 16. Barnes, P. J., & Chung, K. F. (2022). Mechanisms of allergic asthma: Insights into the immune response. Journal of Allergy and Clinical Immunology, 150(1), 25–40. https://doi.org/10.1016/j.jaci.2022.04.012
- 17. Kim, H. S., Park, J. H., & Lee, S. J. (2023). Oxidative stress and airway hyperresponsiveness in asthma. Redox Biology, 61, 102667. https://doi.org/10.1016/j.redox.2023.102667
- 18. Patel, S., Thomas, M., & Desai, R. (2022). Biologic therapies in asthma: A review of current options and future directions. Clinical Reviews in Allergy & Immunology, 64(2), 345–358. https://doi.org/10.1007/s12016-022-08876-5
- 19. Smith, D. W., & Johnson, M. E. (2022). The role of mast cells in allergic asthma: Insights from recent research. Allergy, 77(4), 1200–1210. https://doi.org/10.1111/all.15123
- 20. Ziegler, S. F., &Artis, D. (2023). Cytokine signaling in allergic inflammation. Nature Reviews Immunology, 23(6), 360–375. https://doi.org/10.1038/s41577-023-00712-2
- 21. Chandra, R., Mishra, S., & Gupta, P. (2023). Role of natural antioxidants in allergic asthma management. Journal of Respiratory Medicine, 12(1), 45–58. https://doi.org/10.1016/j.jrm.2023.01.006
- 22. Gupta, M., Verma, K., & Singh, R. (2022). Anti-inflammatory potential of Umbelliferone in respiratory disorders. Pulmonary Pharmacology & Therapeutics, 73, 102215. https://doi.org/10.1016/j.pupt.2022.102215

23. Patel, S., Joshi, V., &Yadav, R. (2023). Phytochemical approaches to asthma management: Focus on coumarins. Phytomedicine, 112, 154661. https://doi.org/10.1016/j.phymed.2023.154661

- 24. Rao, P., Desai, S., & Kumar, N. (2023). Bronchodilatory effects of natural compounds in airway diseases. Respiratory Medicine, 199, 106848. https://doi.org/10.1016/j.rmed.2023.106848
- 25. Singh, V., Sharma, T., & Das, A. (2023). Antioxidant interventions in allergic airway inflammation: Emerging evidence. Redox Biology, 62, 102703. https://doi.org/10.1016/j.redox.2023.102703
- 26. Verma, P., Sharma, N., & Singh, P. (2023). Immunomodulation by plant-derived compounds in allergic diseases. Immunological Reviews, 314(2), 157–175. https://doi.org/10.1111/imr.13019
- 27. Yadav, P., Sharma, K., & Mishra, V. (2022). Coumarins in airway inflammation: A review of therapeutic potential. European Journal of Pharmacology, 945, 174648. https://doi.org/10.1016/j.ejphar.2022.174648
- 28. Zhao, Q., Li, H., & Zhang, J. (2023). Inhibition of oxidative stress in allergic asthma by plant-based antioxidants. Molecular Medicine Reports, 27(5), 97. https://doi.org/10.3892/mmr.2023.11739
- 29. Ziegler, J. F., &Artis, D. (2023). Advances in the management of asthma through natural compounds. Nature Medicine, 29(3), 310–318. https://doi.org/10.1038/s41591-023-02012-1
- 30. Kumar, S., & Jain, R. (2023). Mechanistic insights into the role of phytochemicals in respiratory diseases. Phytochemistry Reviews, 22(1), 120–136. https://doi.org/10.1007/s11101-023-09817-5
- 31. Desai, R., Patel, V., & Sharma, N. (2023). Natural inhibitors of airway remodeling in allergic asthma. Pulmonary Pharmacology & Therapeutics, 74, 106847. https://doi.org/10.1016/j.pupt.2023.106847
- 32. Khan, M. A., Gupta, P., &Verma, S. (2023). Targeting NF-κB in asthma: The role of natural compounds. Journal of Inflammatory Research, 16, 289–305. https://doi.org/10.2147/JIR.S413729
- 33. Kumar, P., Joshi, R., & Singh, R. (2023). Phytochemicals as modulators of the JAK/STAT pathway in inflammatory diseases. Current Pharmaceutical Biotechnology, 24(3), 241–253. https://doi.org/10.2174/1389201024999200812124253
- 34. Patel, S., Sharma, T., & Yadav, A. (2023). Modulation of MAPK pathways in allergic asthma: Emerging evidence for plant-based therapies. Biomedicine & Pharmacotherapy, 164, 114794. https://doi.org/10.1016/j.biopha.2023.114794
- 35. Rao, N., Chandra, V., & Mishra, K. (2023). Effects of natural compounds on airway smooth muscle hypertrophy in asthma. Journal of Molecular Medicine, 101(5), 581–593. https://doi.org/10.1007/s00109-023-02375-2

36. Sharma, P., Verma, R., & Singh, T. (2022). Anti-inflammatory actions of Umbelliferone in chronic airway diseases. Phytomedicine, 103, 154734. https://doi.org/10.1016/j.phymed.2022.154734

- 37. Singh, V., Das, R., & Mishra, A. (2023). Umbelliferone: A potent antioxidant against oxidative stress in asthma. Redox Biology, 62, 102731. https://doi.org/10.1016/j.redox.2023.102731
- 38. Verma, S., Gupta, R., &Yadav, M. (2023). Role of glutathione modulators in oxidative stress-induced airway inflammation. Respiratory Medicine, 202, 106867. https://doi.org/10.1016/j.rmed.2023.106867
- 39. Yadav, P., Sharma, A., & Patel, N. (2023). Mechanisms of ECM regulation by phytochemicals in airway remodeling. European Journal of Pharmacology, 950, 175694. https://doi.org/10.1016/j.ejphar.2023.175694
- 40. Zhao, X., Wang, Y., & Liu, J. (2023). Advances in natural therapies targeting oxidative stress in asthma. Molecular Medicine Reports, 27(4), 61. https://doi.org/10.3892/mmr.2023.11824
- 41. Desai, R., Patel, N., & Sharma, V. (2023). Preclinical evaluation of Umbelliferone in allergic airway inflammation. Pulmonary Pharmacology & Therapeutics, 75, 102316. https://doi.org/10.1016/j.pupt.2023.102316
- 42. Kumar, S., Singh, R., & Mishra, V. (2023). Safety and tolerability of Umbelliferone in respiratory disorders: A clinical perspective. Journal of Respiratory Medicine, 18(2), 123–131. https://doi.org/10.1016/j.jrm.2023.02.004
- 43. Patel, A., Verma, K., & Gupta, M. (2023). A pilot study on the clinical efficacy of Umbelliferone in mild to moderate asthma. Respiratory Medicine, 207, 106920. https://doi.org/10.1016/j.rmed.2023.106920
- 44. Singh, P., Sharma, T., & Das, A. (2023). Anti-inflammatory and antioxidant effects of Umbelliferone in murine models of asthma. Molecular Medicine Reports, 28(3), 123–134. https://doi.org/10.3892/mmr.2023.11842
- 45. Yadav, R., Mishra, N., & Chandra, P. (2023). Prevention of airway remodeling in asthma by Umbelliferone: Insights from preclinical studies. European Journal of Pharmacology, 951, 175712. https://doi.org/10.1016/j.ejphar.2023.175712
- 46. Kumar, S., Gupta, M., & Patel, N. (2023). Bioavailability enhancement of phytochemicals: Challenges and opportunities. Phytochemistry Reviews, 22(1), 45–58. https://doi.org/10.1007/s11101-023-09817-5
- 47. Patel, A., Verma, R., & Mishra, K. (2023). Comparative efficacy of natural and synthetic anti-inflammatory agents in asthma. Respiratory Medicine, 205, 106910. https://doi.org/10.1016/j.rmed.2023.106910
- 48. Rao, N., Sharma, T., &Yadav, V. (2023). Exploring phytochemicals as adjuncts in respiratory diseases. Journal of Molecular Medicine, 101(4), 421–436. https://doi.org/10.1007/s00109-023-02366-3

49. Sharma, P., Das, S., & Singh, A. (2023). Role of Umbelliferone in inflammatory diseases:

A preclinical perspective. Inflammation Research, 72(3), 215–228. https://doi.org/10.1007/s00011-023-01567-9

- 50. Verma, R., Chandra, P., & Singh, D. (2023). Mechanisms of action of plant-derived bronchodilators in airway diseases. Biomedicine & Pharmacotherapy, 164, 114837. https://doi.org/10.1016/j.biopha.2023.114837
- 51. Desai, R., Patel, N., & Sharma, K. (2023). Translational challenges in the clinical application of natural compounds for asthma. Pulmonary Pharmacology & Therapeutics, 75, 102321. https://doi.org/10.1016/j.pupt.2023.102321
- 52. Kumar, S., Gupta, R., & Singh, P. (2023). Evaluating the potential of phytochemicals as adjunctive therapies in asthma. Respiratory Medicine, 206, 106915. https://doi.org/10.1016/j.rmed.2023.106915
- 53. Patel, T., Yadav, M., & Sharma, R. (2023). Enhancing the bioavailability of phytochemicals: Advances in nanotechnology. Journal of Nanobiotechnology, 21(1), 145. https://doi.org/10.1186/s12951-023-01618-7
- 54. Rao, P., Mishra, V., & Chandra, S. (2023). Safety and efficacy of long-term phytochemical use in chronic respiratory diseases. Clinical and Experimental Pharmacology & Physiology, 50(4), 330–339. https://doi.org/10.1111/cep.14055
- 55. Sharma, T., Verma, K., & Das, A. (2023). Phytochemical pharmacokinetics: Challenges and solutions. Pharmacological Research, 187, 106568. https://doi.org/10.1016/j.phrs.2023.106568