MELKERSSON CONDITION AND SERRE SUBCATEGORIES

Rasul Rasuli¹ and Sebar Ghaderi^{2*}

¹ Department of Mathematics, Payame Noor University(PNU), P. O. Box 19395-4697, Tehran, Iran ^{2*} Department of Mathematics, Payame Noor University(PNU), P. O. Box 19395-4697, Tehran, Iran

Abstract

Let R be a noetherain ring, a be an ideal of R,M and N R-modules. Let δ be a Serre subcategory of the category of R-module. We define δ - dim(M) and δ -dim(M,N). We fine some conditions under which $H_a^i(M)$ and $H_a^i(M,N)$ belong δ for all $i \ge 0$.

Keywords: Dimension theory, Serre subcategory, Melkersson condition, Local cohomology. *2000 AMS Classification*: 13C15, 13C60, 13D45.

1. INTRODUCTION

Throughout *R* is a commutative noetherian ring. As a general reference to homological and commutative algebra we use [1]. Recall that a class of *R*-modules is a serre subcategory of the category of *R*-modules when it is closed under taking submodules, quotients and extensions. Always, δ stands for a serre subcategory of the category of *R*-modules. Hence, if $L \to M \to N$ is an exact sequence of the category of *R*-modules and *R*-homomorphisms such that both end terms belong to δ , then *M* is also belong to δ . Note that the following subcategories are examples of serre subcategory of the category of the *R*-modules: finite *R*-modules; coatomic *R*-modules [14]; minimax *R*-modules [15] and trivially the zero *R*-modules. Generalized local cohomology was intrduced by Grothendieck [10]. They are defined as the right derived functors of the left exact functor $\Gamma_a(Hom_R(M, -))$. Here *M* is a finite *R*-modules. They can also be computed as $H_a^i(M, N) \cong \lim_{n \in N} Ext_R^i(M/a^nM, N)$ where *N* is an arbitrary *R*-modules. If $0 \to L \to P \to Q \to 0$ is an exact sequence of *R*-modules, then there are long exact sequence

$$0 \to H^0_a(M,L) \to H^0_a(M,P) \to H^0_a(M,Q) \to \cdots$$
$$H^n_a(M,L) \to H^n_a(M,P) \to H^n_a(M,Q) \to \cdots$$

It is well-known that the Generalized local cohomology and ordinary local cohomology modules are not in serre class of the category of *R*-modules in general. This notion has been studied by several authors; see, for example [1, 2, 4, 5] and [12]. Our objective in this paper is to define δ dim(M) and δ - dim(M, N) such that we characterize the membership of $H_a^i(M)$ and $H_a^i(M, N)$ to δ for all $i \ge 0$. Recall that if *M* be an *R*-module and *a* an ideal of *R*, the height of *a* on *M* and the krull dimension of *M* with respect to δ are defined as $\delta ht_M(a) :=$ $inf\{ht_M(q)|q \in \delta - sup(M) \cap V(a)\}$ and $\delta - dim(M) := sup\{ht_M(q)|q \in \delta - sup(M)\}$ respectively.

2. SOME RESULTS IN LOCAL COHOMOLOGY AND SERRE SUBCATEGORY

The following Lemma and remark characterize membership of M to δ .

Lemma 2.1. Let $\delta \neq 0$ be a serre subcategory of the category of R-modules. If $\delta - \dim(M) = 0$ and M be a finite R-modules then $M \in \delta$.

Proof. Let M is not in δ , so by [4, Lemma 2.1], R/p is not in δ , for some $p \in \text{Supp}_R(M)$ and we have $p \in \delta - \text{Supp}_R(M)$ such that $ht_M(p) \neq 0$, consequently $\delta - \dim(M) \neq 0$ which is a contradiction.

Remark 2.2. Let $M \neq 0$ be a finite R-module. If $H_a^i(M) \in \delta$ then by [4, Lemma 2.1], $R/p \in \delta$ such that $p \in H_a^i(M) \subset \text{Supp}_R(M) \cap V(a)$, so $p \in \text{Supp}_R(M)$ and $M \in \delta$.

Definition 2.3. (See [6, Definition 2.2.1]) Let M be an R-module. The generalized ideal transform functor with respect to an ideal a of R is defined by $D_a(M, 0) = \lim_{n \in \mathbb{N}} \operatorname{Hom}_R(a^n M, 0)$. Let $\operatorname{R}^i D_a(M, 0)$ denote the i-th rught derived functor of $D_a(M, 0)$. One can check easily that there is a natural isomorphism $\operatorname{R}^i D_a(M, 0) \cong \lim_{n \in \mathbb{N}} \operatorname{Ext}^i_R(a^n M, 0)$.

Proposition 2.4. Let M be an R-module such that $\operatorname{Ext}_{R}^{i}(R/a, M) \in \delta$. If $\operatorname{Ext}_{R}^{i}(R/a, \Gamma_{a}(M)) \in \delta$, then $\operatorname{Hom}_{R}(R/a, \operatorname{H}_{a}^{i}(M)) \in \delta$.

Proof. The exact sequence $0 \to \Gamma_a(M) \to M \to M/\Gamma_a(M) \to 0$ induces the long exact sequence

$$\cdots \operatorname{Ext}^{i}_{R}(R/a, M) \to \operatorname{Ext}^{1}_{R}(R/a, M/\Gamma_{a}(M)) \to \operatorname{Ext}^{2}_{R}(R/a, \Gamma_{a}(M)) \to \cdots$$

So $\operatorname{Ext}^{1}_{R}(R/a, M/\Gamma_{a}(M)) \in \delta$. We know that $\operatorname{Hom}_{R}(R/a, D_{a}(M)) \cong (0: D_{a}(M)(M)) \subseteq \Gamma_{a}(D_{a}(M)) = 0$ so $\operatorname{Hom}_{R}(R/a, D_{a}(M)) \in \delta$.

The exact sequence
$$0 \rightarrow M/\Gamma_a(M) \rightarrow D_a(M) \rightarrow H_a^1(M) \rightarrow 0$$

induce the long exact sequence

$$\cdots \rightarrow \operatorname{Hom}_{R}(R/a, D_{a}(M)) \rightarrow \operatorname{Hom}_{R}(R/a, H^{1}_{a}(M)) \rightarrow \operatorname{Ext}^{1}_{R}(R/a, M/\Gamma_{a}(M)) \rightarrow \cdots$$

So $\operatorname{Hom}_{\mathbb{R}}(\mathbb{R}/a, \operatorname{H}_{a}^{1}(\mathbb{M})) \in \delta$.

In [3], M. Aghapournahr and L. Melkersson gave the following condition on serre subcategory or R-modules.

Definition 2.5. Let δ be a serre subcategory of the category of R-modules. We say that δ satisfies the condition: (C_{α}) if M = $\Gamma_{\alpha}(M)$ and if 0 : M_{α} is in δ then M is in δ .

Example 2.6. The class of zero modules and artinian R-modules satisfy the condition C_{α} . The following easy Lemma is useful in proof of the next theorem and we lift it to the reader.

Lemma 2.7. Let a be an ideal of R, let δ be a serre subcategory; and let $M \in \delta$. Then $\text{Ext}_{R}^{i}(R/a, M) \in \delta$ for each $i \ge 0$.

The following Theorem is the main result of this section. In fact we generalize the Vanishing Theory of Grothendieck.

Theorem 2.8. Let δ be a serre subcategory of the category of R-modules. If δ satisfies the condition C_{α} , then $H_a^i(M) \in \delta$ for all $i > \delta - \dim M$.

Proof. When $\delta - \dim(M) = -1$, there is nothing to prove, as when M = 0. The result is also clear if a = R, as then Γ_{α} is the zero functor. We therefor suppose henceforth in this proof that $M \neq 0$ and a $a \subseteq m$. We argue by induction on $\delta - \dim(M)$. Let $\delta - \dim(M) = 0$. Since for each $i \ge 0$, the local cohomology functor H_a^i commutes with direct limit, and M can be viewed as the direct of its finitely generated submodules, it is sufficient for us to prove that $H_a^i(M) \in \delta$ whenever M is a finitely generated R-module, so by Lemma 2.1 and Lemma 2.7 $H_a^i(M) \in \delta$ for all $i > \delta - \dim M$. Now suppose, inductively, that $\delta - \dim M = n$ and the result has been proved for all R-modules of $\delta - \dim M$ smaller than n > 0. It follows

that $H_a^i(M) \cong H_a^i(M/\Gamma_{\alpha}(M))$ for all i > 0. Also, $M/\Gamma_{\alpha}(M)$ is an a-torsion-free R-module. Then, in view of, the ideal a contains an element x which is M-regular. The exact sequence

$$0 \rightarrow M \rightarrow M \rightarrow M/xM \rightarrow 0$$

induce a long exact sequence

$$\dots \rightarrow H_a^{i-1}(M/xM) \rightarrow H_a^i(M) \rightarrow H_a^i(M) \rightarrow \dots$$

Since $\delta - \dim(M/xM) \leq (\delta - \dim(M)) - (\delta - ht_R(M)) = n - 1$, by induction hypothesis $H_a^{i-1}(M/xM) \in \delta$ and by the above exact sequence, we have $(0 : H_a^i(M)x) \in \delta$ so $H_a^i(M) \in \delta$ for all $i > \delta - \dim(M)$.

Remark 2.9. In Theorem 2.8 if δ satisfies the condition C_a , then $\delta - \dim(M) = \sup\{i|H_a^i(M) \in \delta\}$ and if $L \to M \to N$ be an exact sequence of finite R-modules, then $\delta - \dim(M) = \max\{\delta - \dim(N), \delta - \dim(L)\}$.

Definition 2.10. Let δ be a serre subcategory of the R-modules and let M be a module over the noetherain ring R. Following [3] an element x of R is called δ – regular on M if module o: M x is in δ . A sequence $x_1, ..., x_n$ is an δ -sequence on M if is δ -regular on M / $(x_1, ..., x_j - 1)$ M for j = 0, 1, ..., n. Also if M be a finite module such that M / aM is not in δ , where δ satisfies the condition C_a , then we denote the common length of all maximal δ – regular on M in a by δ – depth_a(M).

Example 2.11. Let δ be the class of zero modules, so δ – depth_a(M). Will be the same an ordinary depth_a(M).

Corollary 2.12. Let M be a finite module and let a be an ideal of R such that M / aM is not in δ , if δ be a serre subcategory of the category of R-modules, the satisfies the condition C_a, then any integer I for which Hⁱ_a(M) is not in δ much satisfies δ – depth_a(M) $\leq i \leq \delta$ – dim(M). Proof. Use Theorem 2.8 and [3, Theorem 2. 18].

Definition 2.13. (See[3, Definition 3.5]) Let δ be a serre subcategory of the category of R-module. For each R-module M, set $ch_g(a, M) = sup\{i | H_a^i(M) \in \delta\}$ which is called δ -cohomological dimension of M with respect to a. The δ -cohomological dimension of a is $ch_g(a) = sup\{ch_g(a, M)\}$ for all R-module M.

Example 2.14. Let $\delta = \{0\}$, then $ch_g(a, M) = cd(a, M)$, and if δ , be the class of artinian modules, then $ch_g(a, M) = q(a, M)$ as in [11] and [9].

Proposition 2.15. Let a be an ideal of R. Then $ch_g(a, R) = ch_g(a)$.

Proof. Set $d = ch_g(a)$. Since R is noetherian so a can be generated by t elements. Then by [6, Theorem 3.3.1] $H_a^i(M)\epsilon\delta$ for all i > t, and d will be finite. Thus, $H_a^n(M)\epsilon\delta$ for all $n \ge d + 1$, and there is an R-module M with $H_a^n(M)$ is not in δ . Pick a surjective homomorphism $F \to M$, whith F a free R-module, and complete to an exact sequence $0 \to K \to F \to M \to 0$. From the resulting long exact sequence, one obtain an exact sequence $H_a^d(K) \to H_a^d(F) \to H_a^d(M) \to H_a^{d+1}(K)$. We conclude that $H_a^d(F)$ is not in δ , and so $H_a^d(R)\epsilon\delta$.

The following Theorem shows the relationship between $ch_g(M)$ and $\delta - dim(M)$.

Theorem 2.16. Let δ be a serre subcategory of the category of R-modules. If δ satisfies the condition C_a , then $ch_g(a, M) \leq \delta - dim(M)$.

Proof. When $ch_g(a, M) = -\infty$ or $\delta - dim(M) = \infty$, there is nothing to prove. If $\delta - dim(M) = 0$, then by Theorem we have $ch_g(a, M) = 0$. Now suppose, inductively, that $\delta - dim(M) = d$ such that d > 0and the result has been proved for all R-modules of δ -dimensions smaller than n. In fact we prove $H_a^i(M) \in \delta$ for all i > n. Let $L = M/\Gamma_a(M)$, then $l = \delta - dim(L) \le \delta - dim(M) = n$, and it is sufficient for us to prove $H_a^i(L) \in \delta$ for all i > l.

Since $\Gamma_a(L) = 0$, we have $\Gamma_a(M) = 0$ and the ideal a contains an element x which is M-regular. The exact sequence $0 \rightarrow M \rightarrow M \rightarrow M/xM \rightarrow 0$ induce a long exact sequence $H_a^{i-1}(M/xM) \rightarrow H_a^i(M) \rightarrow H_a^i(M)$. Since $\delta - \dim(M/xM) < n - 1$, it follows from the hypothesis, $H_a^{i-1}(M/xM) \in \delta$. Also, by above exact sequence and the condition C_a , $(0: H_a^i(M)x) \in \delta$, so $H_a^i(M) \in \delta$ for all i > n.

Corollary 2.17. Let δ be a Serre subcategory of the category of R-modules. If δ satisfies the condition C_a , then $cd_g(m) \leq \delta - dim(R)$.

Proposition 2.18. Let δ be a Serre subcategory of the category of R-modules. If δ satisfies the condition C_a . If N be submodule of M, then $\delta - \dim(N) \leq \delta - \dim(M)$, and $\delta - \dim(M/N) \leq \delta - \dim(M)$.

Proof. Let $\delta - \dim(M) < d$. By exact sequence $0 \rightarrow N \rightarrow M \rightarrow M/N \rightarrow 0$,

We would have the long exact sequence

$$\dots \rightarrow H^{d}_{a}(N) \rightarrow H^{d}_{a}(M) \rightarrow H^{d}_{a}\left(\frac{M}{N}\right) \rightarrow H^{d+1}_{a}(N) \rightarrow \dots$$

So from Remark 2.9, $H_a^d(N) \in \delta$, and $H_a^d(M/N) \in \delta$.

3. A STUDY OF GENERALLZED LOCAL COHOMOLOGY UNDER CONDITION C_a

Lemma 3.1. (See [8, Lemma 2.2]) Let M be an R-module. For any R-module N, there is an exact sequence,

$$0 \to H^0_a(M,N) \to Hom_R(M,N) \to D_a(M,N) \to H^1_a(M,N) \to \dots$$

$$\rightarrow H^i_a(M,N) \rightarrow Ext^i_R(M,N) \rightarrow R^i D_a(M,N) \rightarrow H^{1+1}_a(M,N) \rightarrow \cdots,$$

moreover, if M has finite projective dimension, then there is a natural isomorphism $H_a^{1+1}(M,N) \cong R^i D_a(M,N)$ for all $i \ge pdM + 1$.

Proposition 3.2. Let a, b be ideals of ring R_i such that $a \subseteq b$. Let $Ext_R^1(R/b, Hom_R(M, N)) \in \delta$, such that $Ext_R^2(R/a, H_a^0(M, N)) \in \delta$. If $Ext_R^1(M, N)) = 0$, then $Hom_R(R/b, H_a^1(M, N))) \delta$.

Proof. The exact sequence

$$0 \to H^0_a(M,N) \to Hom_B(M,N) \to Hom_B(M,N)/H^0_a(M,N) \to 0$$

induce the long exact sequence

$$\dots \rightarrow Ext_R^1(R/b, Hom_R(M, N)) \rightarrow Ext_R^1(R/b, Hom_R(M, N)/H_a^0(M, N)) \rightarrow Ext_R^2(R/b, H_a^0(M, N)) \dots$$

then $Ext_R^1(R/b, Hom_R(M, N)/H_a^0(M, N)) \in \delta$. By Lemma 3.1, and $Ext_R^1(M, N)) = 0$, we have the exact sequence

$$0 \rightarrow Hom_R(M,N)/H^0_a(M,N) \rightarrow D_a(M,N) \rightarrow H^1_a(M,N) \rightarrow 0$$

and

$$\dots \rightarrow Hom_R(R/b, D_a(M, N)) \rightarrow Hom_R(R/b, H_a^1(M, N)) \rightarrow$$

 $Ext_R^1(R/b, Hom_R(M, N)/H_a^0(M, N)) \rightarrow \cdots$

Since $Hom_R(R/b, D_a(M, N) \cong (0_{D_a(M,N)} b) \subseteq \Gamma_a(D_a(M, N)) = 0$, so $Hom_R(R/b, D_a(M, N))$ $\in \delta$, and $Hom_R(R/b, H_a^i(M, N) \in \delta$.

Proposition 3.3. Let $Ext_R^i(R/a, n) \in \delta$ for all $0 \le i \le t$ if $H_a^i(M, N) \in \delta$ for all $0 \le i \le t$ then $Hom_R(R/a, H_a^i(M, N)) \in \delta$.

Proof. We use induction on t. By Lemma 2.7 for t = 0, proof is clear. The exact sequence

$$0 \rightarrow Hom_a^0(M,N)Hom_R(M,N) \rightarrow Hom_R(M,N)/H_a^0(M,N) \rightarrow 0,$$

induce a long exact sequence

 $0 \rightarrow Hom_R(R/a, H^0_a(M, N)) \rightarrow Hom_R(R/a, Hom_a(M, N)) \rightarrow \dots$

Suppose that t > 0 and that the result has been proved for smaller values of t. It follows [6, corollary 2.1.7] that $H_a^i(N) \cong H_a^i(N/\Gamma_a(N))$ for all i > 0 so $\Gamma_a(N) = 0$. Let $E_R(N)$ be an injective involope of N, and L =

 $E_R(N)/N$ so $0 \to N \to E_R(N) \to L \to 0$ will be exact, and we have: $\Gamma_a(E_R(M)) = 0$, $Hom_R(R/a, E_R(M)) = 0$, $H_a^0(M, E_R(N)) = 0$. Therefore we have for all $i \ge 0$: $Ext_R^{i+1}(\frac{R}{a}, L) \cong Ext_R^{i+1}(\frac{R}{a}, N)$, $H_a^i(M, L) \cong H_a^{i+1}(M, N)$, $H_a^i(L) \cong H_a^{i+1}(N)$. The inductive step will be completed from the inductive hypothesis about L and this fact that $Hom_R(R/a, H_a^i(M, N)) \cong Hom_R(R/a, H_a^{i-1}(M, L))$.

Definition 3.4. Let δ be a Serre subcategory of the category of *R*-modules. For two *R*-modules *M* and *N* set $\delta - dim(M, N) = sup\{i | H_a^i(M, N) \in \delta\}$ which is called δ -generalized cohomological dimension of *M* and *N* with respect to *a*.

Theorem 3.5. If $x \in a$ be a regular element on *N*. Then $\delta - dim(M, N/xN) \leq \delta - dim(M, N)$.

Proof. Let $\delta - dim(M, N) = n$. Then $H_a^i(M, N) \in \delta$ for all $i \ge n$. The exact sequence

 $0 \rightarrow N \rightarrow N \rightarrow N/xN \rightarrow 0$ implies the following long exact sequence of generalized local cohomology modules.

 $H_a^{n+1}(M,N) \to H_a^{n+1} + {}^1(M,N/xN) \to H_a^{n+2} + 2(M,N).$

We get $H_a^{n+1}(M, N/xN) \in \delta$ and so $\delta - dim(M, N/xN) \leq n$. The following Proposition is a generalization of [13, Proposition 2.4].

Proposition3.6. Let (R, m) be a local ring such that $H_a^i(M, N) \in \delta$ for all i < n, and δ satisfies the condition C_a , then $\Gamma_m(H_a^n(M, N)) \in \delta$. *Proof.* It follows from 3.3 that $Hom_R(R/a, H_a^n(M, N)) \in \delta$. Since $\Gamma_m(Hom_R(R/a, H_a^n(M, N)))$ is subset of $Hom_R(R/a, H_a^n(M, N))$ then $\Gamma_m(Hom_R(R/a, H_a^n(M, N))) \in \delta$. By the isomorphism $\Gamma_m(0:_{H_a^n(M,N)}a) \cong (0:_{\Gamma_m(H_a^n(M,n))}a)$ and condition C_a , $\Gamma_m(H_a^n(M, N)) \in \delta$.

4. Open Problem

Recall that A fuzzy subset of a set *X*, we mean a function from *X* into [0,1].

A *t*-norm *T* is a function $T: [0,1] \times [0,1] \rightarrow [0,1]$ having the following four properties:

$$(1) \quad T(x,1) = x,$$

- (2) $T(x,y) \leq T(x,z)$ if $y \leq z$,
- (3) T(x, y) = T(y, x),
- (4) T(x,T(y,z)) = T(T(x,y),z), for all $x, y, z \in [0,1]$.

An *s*-norm *S* is a function $S : [0,1] \times [0,1] \rightarrow [0,1]$ having the following four properties:

- $(1) \quad S(x,0) = x,$
- (2) $S(x,y) \leq S(x,z)$ if $y \leq z$,
- (3) S(x, y) = S(y, x),
- (4) S(x, S(y, z)) = S(S(x, y), z), for all $x, y, z \in [0, 1]$.

Now one can define and consider fuzzy $\delta - \dim(M)$, fuzzy $\delta - \dim(M, N)$, fuzzy $H_a^i(M)$ and fuzzy $H_a^i(M, N)$ for all $i \ge 0$, with respect to norms as First author investigated [12-23]. This can be an open problem for readers in the future.

Acknowledgment. The authors would like to be thankful to the anonymous reviewers for their valuable suggestions.

REFERENCE

[1] M. Aghapournahr, Upper bounds for finiteness of generalized local cohomology modules, Journal of Algebraic System, 1(1) (2013) 1-9. [2] M. Aghapournahr, A.J. Taherizadeh, and A. Vahidi, Extension function of local cohomology modules, arXiv:0903.2093v1[math.A.C], 12 Mar 2009. [3] M. Aghapournahr, L. Melkersson, Local cohomology and Serre subcategory, J. Algebra, 320(2008), 1275-1287. [4] M. Asgharzadeh and M. Tousi, Cohen-Macaulayness with respect to Serre classes, Illinois. J. Math, 53 (2009), no. 1, 67-85. [5] M. Asgharzadeh and M. Tousi, A Unified approache to local cohomology modules using serre classes arXivimath/0712.3875v2 [math.AC], 8 Apr 2008. [6] M. Brodmann and R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics 60, Cambridage University Press(1998). [7] F. Dehghani-Zadeh, On the finiteness properties of generalized local cohomology modules, International Electronic Journal of Algebra 10(2011),113-122. [8] K. Divaani-aazar and R. Sazeedeh, Cofiniteness of generalized local cohomology modules, arXivi:04081163v1[math.AC], 12 Aug 2004. [9] M. T. Dibaei and S. Yassemi, Associated primes and cofiniteness of local cohomology modules, Manuscripta math 117(2005),199-205. [10] A. Grothendieck, Cohomology local des faisceaur coherents et theoremes de lefschctx locaux et globaux (SGA 2), North-Holland, Amsterdam, 1968. [11] R. Hartshorne, Cohomological dimension of algebraic varieties, Ann. of Math. 88(1968),403-450 [12] R. Rasuli, serre subcategory in abelian category, International Journal of Algebra, 7(12) (2013), 549-557.

8

[13] R. Rasuli, Norms Over Intuitionistic Fuzzy Subgroups on Direct Product of Groups, Commun. Combin., Cryptogr. Computer Sci., 1(2023), 39-54.

[14]R. Rasuli, T-Fuzzy subalgebras of BCI-algebras, Int. J. Open Problems Compt. Math., 16(1)(2023), 55-72.

[15]R. Rasuli, Norms over Q-intuitionistic fuzzy subgroups of a group, Notes on Intuitionistic Fuzzy Sets, 29(1)(2023), 30-45.

[16]R. Rasuli, Fuzzy ideals of BCI-algebras with respect to t-norm, Mathematical Analysis and its Contemporary Applications, 5(5)(2023), 30-50.

[17]*R.* Rasuli, Intuitionistic fuzzy complex subgroups with respect to norms(*T* and *S*), Journal of Fuzzy Extention and Application, **4(2)(2023)**, 92-114.

[18]*R. Rasuli, Normality and translation of IFS*($G \times Q$) under norms, Notes on Intuitionistic Fuzzy Sets, 29(2)(2023), 114-132.

[19]*R. Rasuli, Normalization, commutativity and centralization of TFSM(G), Journal of Discrete Mathematical Sciences Cryptography,* **26(4)(2023),** 1027-1050.

[20]R. Rasuli, Intuitionistic fuzzy G-modules with respect to norms (T and S), Notes on Intuitionistic Fuzzy Sets, 29(3)(2023), 277-291.

[21]*R.* Rasuli, Complex fuzzy lie subalgebras and complex fuzzy ideals under t-norms, Journal of Fuzzy Extention and Application, **4(3)(2023)**, 173-187.

[22]R. Rasuli, Anti fuzzy B-subalgebras under S-norms, Commun. Combin., Cryptogr. Computer Sci., 1(2023), 61-74.

[23] R. Rasuli, Complex i ntuitionistic fuzzy Lie subalgebras under norms, Notes on Intuitionistic Fuzzy Sets, 31(1)(2025), 15-28.

[24] R. Sazeedeh and R. Rasuli, Some results in local cohomology and serre subcategory,

Romanian Journal of Mathematics and Computer Science, 3(2) (2013), 185-190.

[25] H. Zoschinger, Minimax Moduln, J. Algebra, 102(1986), 1-32.

[26] H. Zoschinger, koalomare Moduln, Math. Z, 170(1980), 221-232