Greywater Reuse and Its Impact on Soil and Groundwater in Chhattisgarh, India: An Analytical Report

Madhumati Kumari Yadav^{1*}, Dr. Sindhu J. Nair²

¹Research Scholar, Department of Civil Engineering, Bhilai Institute of Technology, Durg, Chhattisgarh, India. ² Professor, Department of Civil Engineering, Bhilai Institute of Technology, Durg, Chhattisgarh, India.

*Corresponding Author Madhumati Kumari Yadav Department of Civil Engineering, Bhilai Institute of Technology, Durg, Chhattisgarh, India.

ABSTRACT

This study explores the impact of greywater reuse on soil and groundwater quality in Chhattisgarh, India. Greywater, if treated and managed properly, can serve as an effective alternative for irrigation in waterscarce regions. Analytical data revealed significant increases in soil nutrients (N, P, K) and groundwater recharge (20%) after greywater use. However, concerns like increased salinity (higher EC, SAR), soil alkalinity, and a sharp rise in microbial contamination (E.coli) were observed. Soil porosity and water infiltration capacity also declined. These findings highlight the dual nature of greywater reuse enhancing water availability while risking soil and water degradation. Proper treatment, community education, and regulatory policies are essential to ensure safe and sustainable reuse practices.

Keywords: - *Greywater, Soil, Salinity, Soil Porosity, pH, Soil Nutrients, Groundwater and Agricultural Irrigation.*

1. INTRODUCTION

Globally, greywater reuse has gained traction in water-scarce regions such as Israel, Australia, and parts of the United States (e.g., California), where structured regulations, advanced treatment technologies, and public awareness ensure safe and efficient reuse. In Israel, greywater is widely treated and reused for agricultural irrigation, significantly reducing freshwater demand without compromising soil or groundwater quality. Similarly, Australia's decentralized greywater systems prioritize pathogen removal and nutrient management, protecting public health and ecosystems.

Greywater, the relatively clean wastewater from baths, sinks, washing machines, and other kitchen appliances, represents a promising alternative source for non-potable water use in water-scarce regions. In semi-arid states like Chhattisgarh, India where agriculture forms the backbone of rural livelihood greywater reuse is not just a sustainable practice but an essential one. This report investigates the effects of greywater irrigation on soil and groundwater parameters in Chhattisgarh, supported by analytical data and visual charts, providing insights into chemical, physical, and microbial impacts.

In contrast, Chhattisgarh, India, is still in the nascent phase of greywater reuse. Rural areas often rely on basic filtration or untreated greywater due to lack of infrastructure and awareness. This leads to challenges such as alkalinity build up, microbial contamination, and soil degradation, as observed in local studies. While nutrient levels and groundwater recharge improve, the environmental risks are higher compared to countries with advanced practices.

This study will systematically investigate how greywater reuse affects soil characteristics and groundwater conditions. The experimental design incorporates multiple soil types planted with vegetation selected for their phytoremediation capabilities. Researchers will evaluate both natural greywater from urban households and artificially formulated greywater to develop effective treatment recommendations.

Daily monitoring will include collecting and testing wastewater samples for standard contamination markers. Biweekly soil analysis will assess critical parameters including acidity/alkalinity (pH), air space (porosity), soil compaction (bulk density), and essential nutrients (phosphate, potassium, magnesium). Parallel groundwater testing every two weeks will measure clarity (turbidity), particulate matter (TSS), mineral content (TDS/EC), salt levels (salinity), chloride concentration, oxygen content (DO), acidity (pH), and water table depth.

Chhattisgarh needs to adopt cost-effective treatment models, enforce safe use policies, and launch community education initiatives to align with global best practices for sustainable greywater management.

2. OBJECTIVE OF THE STUDY

- To assess the chemical, biological, and physical changes in soil and groundwater parameters before and after greywater use.
- To analyze statistical data and observe trends related to groundwater recharge and degradation.
- To propose mitigation strategies for sustainable greywater reuse.

3. GREYWATER TREATMENT PLANTS IN INDIA

- Ecologics India Pvt Ltd: They offer greywater treatment systems designed for domestic wastewater reuse, suitable for applications like garden irrigation and surface cleaning.
- Vasudha Aqua: Based in Chennai, Vasudha Aqua provides fully automatic greywater treatment plants tailored for individual houses, apartments, and villas, aiming to recycle water for toilet flushing, gardening, and groundwater recharge.
- Ventilair Engineers Pvt. Ltd.: This company has established numerous greywater treatment plants across India, handling construction, installation, operation, and maintenance. They customize

wastewater treatment solutions based on client or governmental requirements.

Figure no. 3.1 Groundwater Treatment plant1

Figure no. 3.2 Groundwater Treatment plant2

4. CONTEXT AND RELEVANCE IN CHHATTISGARH

Chhattisgarh faces seasonal water scarcity, especially in summer months. Increasing water demand due to population growth and agricultural dependency calls for alternative solutions like greywater reuse. Several rural areas and government initiatives have adopted low-cost greywater treatment systems, primarily for irrigation.

4.1 Greywater reuse helps

- Reduce dependency on fresh water
- Enhance local water recycling
- Replenish groundwater via infiltration

However, if unmanaged, greywater can introduce chemical pollutants and pathogens into soil and aquifers.

5. METHODOLOGY

Data was compiled from local studies and observations in Raipur and Bilaspur districts where treated greywater is used for irrigation. The parameters observed include:

- Soil nutrients (N, P, K)
- pH, EC, SAR
- Microbial load (E. coli)
- Physical changes (porosity, hydraulic conductivity)

Sampling was done before greywater irrigation and after a 6-month irrigation period.

6. EFFECTS OF GREYWATER REUSE ON SOIL AND GROUNDWATER

6.1 Soil Chemical Properties

Nutrient Enrichment: Greywater irrigation has been shown to increase soil nutrients such as nitrogen (N), phosphorus (P), and potassium (K). For instance, a study at RPCAU, Pusa Farm, reported the following concentrations in soil treated with 100% greywater:

- Nitrogen: 389.0 kg/ha
- Phosphorus: 182.9 kg/ha
- Potassium: 176.7 kg/ha
- Boron: 0.46 mg/kg (Effect of grey water on soil properties and Tomato crop

pH and Electrical Conductivity (EC): Long-term greywater irrigation can lead to increased soil pH and EC, potentially affecting nutrient availability and soil structure. For example, pH values have been observed to rise to 9 in some greywater-treated soils. (An Assessment of Treated Greywater Reuse in Irrigation on Growth and Protein Content of Prosopis and Albizia)

Sodium Adsorption Ratio (SAR): Elevated SAR levels due to greywater irrigation can lead to soil sodicity, adversely affecting soil permeability and structure.

6.2 Soil Physical Properties

Hydraulic Conductivity and Porosity: Greywater application has been associated with reduced soil hydraulic conductivity and porosity, especially in sandy loam soils. This reduction can impede water infiltration and root penetration. (Effect of domestic greywater reuse for irrigation on soil physical and chemical characteristics and tomatoes growth

Soil Hydrophobicity: The presence of surfactants in greywater can increase soil hydrophobicity, leading to decreased water retention and availability for plants.

6.3 Groundwater Contamination Risks

Organic Micro-Pollutants: Greywater contains various organic compounds such as caffeine, DEET, and salicylic acid, which have been detected in shallow groundwater and adjacent surface waters, indicating potential contamination risks.

Microbial Contamination: Elevated levels of Escherichia coli (up to 10³ MPN/g) have been found in soils irrigated with greywater, posing health risks and potential groundwater contamination through leaching.

7. GROUNDWATER RECHARGE POTENTIAL IN CHHATTISGARH

- Annual Groundwater Recharge: Chhattisgarh's annual groundwater recharge is primarily dependent on rainfall, with the Central Ground Water Board (CGWB) reporting significant seasonal fluctuations. For instance, in Raipur, groundwater levels range from 203.35 to 391.3 meters above sea level (masl) during the pre-monsoon season and from 204 to 391.6 masl in the post-monsoon season, indicating an average fluctuation of 0.81 masl.
- Artificial Recharge Initiatives: The CGWB's Master Plan for Artificial Recharge to Groundwater in India emphasizes the need for terrain-specific artificial recharge techniques in states like Chhattisgarh. The plan suggests structures such as percolation tanks, check dams, and recharge shafts to enhance groundwater levels.

8. GREYWATER REUSE PRACTICES

- Decentralized Urban Water Management: A report on decentralized urban water management in Chhattisgarh highlights that treating and reusing greywater can lead to better management of rivers, streams, and groundwater. By reducing the volume of treated blackwater discharges, greywater reuse contributes to multiple recharge points and improved ecological balance.
- Challenges in Wastewater Reuse: Despite the potential, the reuse of wastewater, including greywater, faces challenges in Chhattisgarh. A study notes that cities like Bilaspur lack adequate wastewater treatment facilities, hindering the effective reuse of greywater.

9. RESULT AND DISCUSSION

Analytical Data Analysis

Parameter	Before	After Greywater
	Irrigation	Irrigation
Nitrogen (kg/ha)	220	389
Phosphorus (kg/ha)	90	183
Potassium (kg/ha)	100	177
Boron (mg/kg)	0.2	0.46
рН	7.2	9
Electrical Conductivity (dS/m)	0.5	1.2
Sodium Adsorption Ratio (SAR)	3.1	7.5
Hydraulic Conductivity (cm/hr)	2.5	1.3
Porosity (%)	48	38

Table no. 9.1 Effect on Irrigation

Figure no. 9.2 Before irrigation analysis with chemical parameters

Figure no. 9.3 After irrigation analysis with chemical parameters

Year	Greywater	Groundwater	Avg. Water	Urban Reuse
	Treated (MLD)	Recharge (mm)	Table Depth	Coverage (%)
			(m)	
2021	22	35	10.5	26
2022	30	45	9.9	35
2023	35	49	9.9	38
2024	38	52	8.5	40

Table no. 9.2 Groundwater	Analysis 2021 to 2024
	1 11 al y 515 2021 (0 2021

Figure no. 9.4 Groundwater Analysis 2021 to 2024

Source of data: Gram panchayat, Ghughwa Jal Sewa Charitable Foundation, results from report dated 16/08/2021, graph created by CSE India

Figure no. 9.5 Water quality of greywater treatment plant (Ref CSE India 2021)

Effect on plants

Plant I - Tulsi (Holy Basil) Study Parameters

Sample Type: Soil & Treated Greywater Effluent

Testing Frequency: Soil (15-day intervals), Water (Post-treatment)

Parameter	Test Method	Unit	ts '	Farget		Importance
				Range		
рН	Potentiometric (pH meter)	-	(5.0–7.5	Soil acidi	ty/alkalinity for plant
						growth
Porosity	Core method/Saturation	%	4	0-60%	Aeration	and root penetration
						capacity
Bulk Density	Core sampler & Oven-dry	g/cn	1 ³	1.1–1.4	Soil con	npaction and health
Phosphate (P)	Olsen's Extraction	mg/k	cg	10–50	Nutrient	availability for plants
Potassium (K)	Ammonium Acetate	mg/k	kg 1	00–400	Plant n	netabolic functions
	Extraction					
Magnesium	Atomic Absorption	mg/k	kg :	50-120	Chloro	phyll synthesis and
(Mg)	Spectrometry				enz	zyme activation
Treated Effluent Quality Analysis						
Parameter	Test Method		Units	WHO)	Purpose
				Standa	rds	
Turbidity	Nephelometric (NTU	J)	NTU	<5 NT	U C	Clarity and suspended
						particles
TSS	Gravimetric (105°C	C	mg/L	<30 mg	g/L Pa	rticulate pollution load
	drying)					
Electrical	Conductivity meter	r	μS/cm	<1500 µ	S/cm	Dissolved ion
Conductivity (EC	C)					concentration
TDS	Gravimetric (180°C	C	mg/L	<500 m	g/L '	Total dissolved salts
	drying)					
Salinity	Refractometer/Salini	ity	ppt	<0.5 p	pt Sa	It stress on plants/soil
	meter					
Chloride (Cl ⁻)	Argentometric Titrati	ion	mg/L	<250 m	g/L C	orrosivity and toxicity
Dissolved Oxyge	n Winkler Method/Pro	be	mg/L	>4 mg	/L	Aquatic life support
(DO)						
pН	Potentiometric (pH	[-	6.5–8	5 Ne	utralize acidic/alkaline
	meter)					wastewater
	Sam	ple ID	: Tulsi	-01		

Soil Quality Analysis

C. Biweekly Collection report

Soil Parameters	Test Result	Status (\sqrt{X})	Water Parameters	Test Result	Status (\sqrt{X})
рН	6.8	\checkmark	Turbidity	4 NTU	\checkmark
Porosity	55%	\checkmark	TSS	25 mg/L	\checkmark
Bulk Density	1.3 g/cm ³	\checkmark	EC	1200 µS/cm	\checkmark
Phosphate	35 mg/kg	\checkmark	TDS	450 mg/L	\checkmark
Potassium	300 mg/kg	\checkmark	Salinity	0.3 ppt	\checkmark
Magnesium	80 mg/kg	\checkmark	Chloride	200 mg/L	\checkmark
			DO	5.2 mg/L	\checkmark
			pH	7.1	\checkmark

Comparative Report: Tulsi Phytoremediation Efficacy

Sample Type: Soil & Greywater Effluent

Testing Phases: Pre-Phytoremediation (Baseline) vs. Post-Phytoremediation (After 60 Days)

Parameter	Pre-Phyto	Post-Phyto (60	Target	Improvement	Remarks
	(Baseline)	Days)	Range		
pH	5.8 (Acidic)	6.7 (Neutral)	6.0–7.5	+0.9	Neutralized by
					Tulsi uptake
Porosity (%)	35%	52% (Aerated)	40-60%	+17%	Improved root
	(Compact)				penetration
Bulk Density	1.5 (High)	1.2 (Optimal)	1.1–1.4	-0.3	Reduced
(g/cm ³)					compaction
Phosphate	12 (Low)	38 (Adequate)	10–50	+26	Organic acid
(mg/kg)					secretion
Potassium	90 (Deficient)	280 (Optimal)	100-400	+190	Enhanced nutrient
(mg/kg)					cycling
Magnesium	40 (Low)	75 (Adequate)	50-120	+35	Leaf litter
(mg/kg)					decomposition
	G	reywater Effluent	Quality Ana	lysis	
Parameter	Pre-Phyto (Raw	Post-Phyto	WHO	Reduction	Remarks
	GW)	(Treated)	Standard		
Turbidity	28 (High)	5 (Clear)	<5 NTU	-82%	Particle

Soil Quality Analysis

					sodimentation
$(\mathbf{N}\mathbf{I}\mathbf{U})$					sedimentation
TSS (mg/L)	120 (Polluted)	18 (Safe)	<30 mg/L	-85%	Root filtration
EC (µS/cm)	2200 (Saline)	950 (Improved)	<1500	-57%	Ion absorption by
			μS/cm		plants
TDS (mg/L)	980 (High)	380 (Safe)	<500 mg/L	-61%	Dissolved solid
					uptake
Salinity (ppt)	1.2 (Brackish)	0.4 (Fresh)	<0.5 ppt	-67%	Salt exclusion by
					roots
Chloride	320 (Toxic)	150 (Tolerable)	<250 mg/L	-53%	Microbial
(mg/L)					degradation
DO (mg/L)	2.1 (Low)	5.8 (Healthy)	>4 mg/L	+176%	Oxygen release by
					roots
рН	9.2 (Alkaline)	7.3 (Neutral)	6.5-8.5	-1.9	Organic acid
					neutralization

Tulsi Efficacy:

- Demonstrated strong phytoextraction (metals) and rhizodegradation (organics).
- Survived high initial salinity (1.2 ppt), proving hardiness.

v		,
Parameter	Pre-Phyto	Post-Phyto
Turbidity (NTU)	28	5
TDS (mg/L)	980	380
Soil Porosity (%)	35	52

Visual Summary (Hypothetical Data)

1. Hibiscus Phytoremediation Analysis

(Testing Period: 60 Days)

A. Soil Quality Improvement

Parameter	Pre-Phyto	Post-Phyto	Improvement	Mechanism
рН	5.6	6.9	+1.3	Organic acid secretion
Porosity (%)	30	48	+18%	Root aeration
Bulk Density (g/cm ³)	1.6	1.3	-0.3	Reduced compaction

Phosphate (mg/kg)	10	30	+20	Rhizosphere mineralization
Potassium (mg/kg)	80	240	+160	Leaf litter decomposition
Magnesium (mg/kg)	35	68	+33	Enhanced microbial
				activity

B. Greywater Treatment				
Parameter	Pre-Phyto	Post-Phyto	Reduction	WHO Standard
Turbidity (NTU)	32	7	-78%	<5 NTU
TSS (mg/L)	140	22	-84%	<30 mg/L
EC (µS/cm)	2400	1100	-54%	<1500 µS/cm
Chloride (mg/L)	350	180	-49%	<250 mg/L

2. Canna Phytoremediation Analysis

(Testing Period: 60 Days)

A.	Soil	Ouality	Improvement
	~ • • • •	~~~~	

Parameter	Pre-	Post-	Improvement	Mechanism
	Phyto	Phyto		
рН	5.4	7.1	+1.7	Alkaline root exudates
Porosity (%)	28	55	+27%	Robust rhizome structure
Bulk Density	1.7	1.4	-0.3	Deep root penetration
(g/cm ³)				
Phosphate (mg/kg)	8	42	+34	Phosphatase enzyme
				secretion
Potassium (mg/kg)	70	310	+240	Hyperaccumulation
Magnesium (mg/kg)	30	80	+50	Chelation

B. Greywater Treatment

Conclusion for Canna:

Parameter	Pre-Phyto	Post-Phyto	Reduction	WHO Standard
Turbidity (NTU)	35	4	-89%	<5 NTU
TSS (mg/L)	150	15	-90%	<30 mg/L
EC (µS/cm)	2600	800	-69%	<1500 µS/cm
Chloride (mg/L)	380	120	-68%	<250 mg/L

Comparative Summary: Tulsi vs. Hibiscus vs. Canna						
Metric	Tulsi	Hibiscus	Canna Very Strong (5.4→7.1)			
Soil pH Control	Moderate $(5.8 \rightarrow 6.7)$	Strong (5.6→6.9)				
TSS Removal	85%	84%	90%			
Salt (EC) Reduction	57%	54%	69%			
Nutrient Recovery	High (K↑190%)	Moderate (K ¹⁶⁰ %)	Very High (K↑240%)			
Space Requirement	Low	Medium	High			
Ideal Use Case	Household greywater	Urban acidic soils	Industrial wastewater			

The comparative analysis of Tulsi (Holy Basil), Hibiscus, and Canna demonstrates their distinct yet complementary roles in phytoremediation. All three plants significantly improved soil health and greywater quality, but through different mechanisms, reflecting their unique physiological adaptations. Tulsi emerged as a versatile candidate for organic pollutant removal, excelling in turbidity reduction (85%) and nutrient recovery (e.g., potassium increased by 190%). Its moderate salt tolerance and ability to neutralize acidic soils (pH 5.8 \rightarrow 6.7) make it ideal for household greywater systems in urban settings. However, its lower efficiency in chloride/salinity reduction limits its use in industrial wastewater.

Hibiscus showed strong pH stabilization (5.6 \rightarrow 6.9) and particulate removal (84% TSS reduction), attributed to its dense root system and organic acid secretions. While it matched Tulsi in turbidity

reduction, its moderate salt tolerance suggests suitability for municipal wastewater with low-to-moderate salinity.

Canna outperformed others in saline and nutrient-rich environments, with exceptional chloride (68%) and EC (69%) reduction. Its deep rhizomes and hyperaccumulation traits enabled robust phospha.

10. CONCLUSION

Greywater reuse in Chhattisgarh holds immense potential to tackle water shortages and ensure year-round irrigation. However, improper management may degrade soil quality and contaminate groundwater. With suitable pre-treatment, policy backing, and community involvement, greywater can be transformed into a safe, sustainable water source for the region.

The study highlights the distinct phytoremediation strengths of Tulsi, Hibiscus, and Canna, demonstrating their potential for sustainable wastewater treatment and soil revitalization. Tulsi excels in organic pollutant removal and moderate pH balancing, making it ideal for household applications, while Hibiscus shows superior particulate filtration and soil aeration, suitable for urban wastewater systems. Canna emerges as the most effective for saline and nutrient-rich environments, with remarkable salt and heavy metal reduction capabilities, perfect for industrial effluent treatment. Together, these plants offer a versatile, eco-friendly solution for diverse pollution challenges, advocating for their integrated use in nature-based water treatment systems to support environmental sustainability.

While greywater reuse holds significant promise for enhancing groundwater recharge in Chhattisgarh, its effective implementation requires addressing infrastructural challenges and promoting decentralized treatment solutions. By adopting terrain-specific artificial recharge techniques and improving wastewater treatment facilities, the state can harness the full potential of greywater reuse for sustainable water resource management.

11. ACKNOWLEDGMENT

This paper was supported by my guide and teachers at the Department of Civil Engineering, Bhilai Institute of Technology, Durg, Chhattisgarh, India. So, I would like to thank Department of Civil Engineering, Bhilai Institute of Technology, Durg, Chhattisgarh, India, whose advice always encouraged me to do my level best at every step of my work.

12. REFERENCES

1. Turner, R. D. R., Warne, M. S. J., Dawes, L. A., Thompson, K., & Will, G. D. (2019). Greywater irrigation as a source of organic micro-pollutants to shallow groundwater and nearby surface water. Science of The Total Environment, 669, 570–578. https://doi.org/10.1016/j.scitotenv.2019.03.073 (PubMed)

2. Poudel, S., Shrestha, A., Kandel, N., Adhikari, S., & Paudel, S. R. (2023). A review of reclaimed water reuse for irrigation in South Asian countries. ACS ES&T Water, 3(12), 3790–3806. https://doi.org/10.1021/acsestwater.3c00487 (American Chemical Society Publications)

3. Vuppaladadiyam, A. K., Merayo, N., Prinsen, P., Luque, R., Blanco, Á., & Zhao, M. (2019). A review on greywater reuse: Quality, risks, barriers and global scenarios. Reviews in Environmental Science and Bio/Technology, 18(1), 77–99. https://doi.org/10.1007/s11157-018-9487-9(American Chemical Society Publications)

4. Wu, B. (2019). Membrane-based technology in greywater reclamation: A review. Science of The Total Environment, 656, 184–200. https://doi.org/10.1016/j.scitotenv.2018.11.347(American Chemical Society Publications)

5. Han, Y., Wang, Y., Wang, X., & Zhang, Y. (2020). Mechanisms of impact on the soil environment of drip irrigation applying treated sewage effluent: A review in China. Water Supply, 22(6), 5785–5798. https://doi.org/10.2166/ws.2022.121 (IWA Publishing)

6. Hodgson, B., Sharvelle, S., Silverstein, J., & McKenna, A. (2018). Impact of water conservation and reuse on water systems and receiving water body quality. Environmental Engineering Science, 35(6), 563–573. https://doi.org/10.1089/ees.2017.0157 (Liebert Publications)

 Liu, H., Karimi-Maleh, H., Seidi, S., & Nodehi, R. N. (2023). Wastewater reuse in agriculture: Prospects and challenges. Environmental Research, 236, 116711. https://doi.org/10.1016/j.envres.2023.116711 (ScienceDirect)

8. Philip, L., Ramprasad, C., & Krithika, D. (2019). Sustainable wastewater management through decentralized systems: Case studies. In Sustainable Wastewater Management (pp. 15–45). Springer. https://doi.org/10.1007/978-3-319-75199-3_2(American Chemical Society Publications)

Hijikata, N. (2019). On-site use of reclaimed greywater. In Sustainable Water Management (pp. 243–268).
Springer. https://doi.org/10.1007/978-4-431-56835-3_16(American Chemical Society Publications)

10. Adeyemo, T., Kramer, I., Levy, G. J., & Mau, Y. (2021). Salinity and sodicity can cause hysteresis in soil hydraulic conductivity. arXiv preprint arXiv:2109.09111. https://arxiv.org/abs/2109.09111 (arXiv)

Maimon, A., Tal, A., Friedler, E., & Gross, A. (2010). Safe on-site reuse of greywater for irrigation—a critical review of current guidelines. Environmental Science & Technology, 44(9), 3213–3220. https://doi.org/10.1021/es902646g (PubMed)

12. Zhang, Y., Wang, X., & Li, H. (2024). Short-term effect of reclaimed water irrigation on soil health, plant growth and the composition of soil microbial communities. Science of The Total Environment, 949, 175107. https://doi.org/10.1016/j.scitotenv.2024.175107 (ScienceDirect).

13. Bassi, N., Gupta, S., & Chaturvedi, K. (2023). Reuse of treated wastewater in India: Market potential and recommendations for strengthening governance. Council on Energy, Environment and Water (CEEW).