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Abstract: Conventional automotive radar systems typically operate in a monostatic 
configuration, wherein the transmitter and receiver are co-located. However, recent 
advancements have explored bistatic radar architectures, where the transmitter and 
receiver are spatially separated. This study investigates a highway scenario in which a 
searching vehicle leverages a roadside radar unit to detect targets in its surrounding 
environment. To estimate the Direction of Arrival (DOA) along with range and Doppler 
information, sparse signal representation techniques are employed. Specifically, subspace-
based algorithms such as Multiple Signal Classification (MUSIC) and Estimation of Signal 
Parameters via Rotational Invariance Techniques (ESPRIT), along with a Group Sparsity 
(GS)-based method, are applied for two-dimensional localization and Doppler shift 
estimation in a bistatic radar setup. A comparative performance analysis is presented 
among the MUSIC, ESPRIT, and GS approaches. Simulation results using MATLAB 
demonstrate that the GS method significantly reduces estimation error and enhances the 
accuracy of both target localization and Doppler frequency evaluation compared to 
traditional subspace-based techniques. 
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1. Introduction 
In advanced driver assistance systems (ADAS), radar sensors are widely preferred 

for their ability to detect the range, velocity, and direction of targets, as well as to 
process data effectively under adverse weather conditions. Automotive radars 
operating in the 24 GHz and 77 GHz frequency bands are commonly integrated into 
automated and semi-automated vehicles to scan and sense the surrounding 
environment, thereby enhancing driver safety and decision-making [1]. Traditionally, 
these radars operate in a monostatic configuration, where the transmitter and receiver 
are co-located within the same unit [2]. Conversely, bistatic radar systems feature 
spatially separated transmitter and receiver units, with an additional reference 
receiver used for signal demodulation [3], [4]. Bistatic radar offers several advantages 
over its monostatic counterpart, including enhanced stealth detection capabilities and 
greater flexibility in system deployment. In this work, a bistatic Frequency-Modulated 
Continuous Wave (FMCW) radar system is considered for automotive applications, 
wherein roadside sensors are utilized for the estimation of target range, direction of 
arrival (DOA), and Doppler shift. 

Automotive radar signal processing is a complex and multi-stage procedure that 
involves the detection of a target’s range and velocity, direction of arrival (DOA) 
estimation, and subsequent target localization and tracking [5], [6]. The receiver 
antenna captures multiple signal echoes reflected from targets positioned at various 
directions, often accompanied by noise and clutter. These unwanted components 
complicate accurate target detection and localization. To ensure effective 
beamforming and to suppress interference, accurate DOA estimation of the desired 

Journal For Basic Sciences ISSN NO : 1006-8341

Volume 25, Issue 6, 2025 PAGE NO: 305



 

 

target signals is essential [7]. At the receiver, maximizing the signal-to-noise ratio 
(SNR) is crucial for mitigating the impact of interference and clutter, thereby 
enhancing the reliability and precision of the radar system. 

DOA evaluation techniques can be classified under beamforming approaches, 
Maximum Likelihood Estimator and Subspace-based methods. The methods based on 
signal subspace models, like Multiple Signal Classification (MUSIC) and Estimation 
of Signal Parameters via Rotational Invariance Technique (ESPRIT), decompose the 
received signals into signal subspace and noise subspace and provide better resolution 
for the target [8]. MUSIC algorithm [9] depends on eigenvalue analysis of the signal 
covariance matrix to separate the signal subspace and noise subspace. Then search is 
conducted over all possible angles of arrival, and the angles are chosen that minimize 
the noise subspace. In place of angles, MUSIC can also be used to measure Doppler 
shifts. ESPRIT is based on the rotational invariance property of the signal subarrays 
to solve for DOAs, making it computationally faster than MUSIC and more efficient. 
The ESPRIT algorithm can be used in fast-time and slow-time arrays to estimate range 
and velocity. For simultaneous estimation of the range and the angle, a 2-dimensional 
MUSIC algorithm applied on FMCW MIMO Radar signal processing in distributed 
form has been proposed in [10]. Every Radar applies 2-dimensional MUSIC with its 
specific received signal and then sends its specific values of the cost function for the 
particular Radar image section. Then, the data fusion centre can evaluate the range 
and the direction of the targets jointly from the total cost function. For 2-dimensional 
DOA measurement in bistatic Radar, another method called reduced-dimension 
MUSIC can be used [11], where a 4-dimensional function of spatial spectrum is 
modified into a 2-dimensional search grid to reduce the complexities of computation 
and to improve performance. In [12], a Power Estimation MUSIC (PE-MUSIC) 
algorithm is proposed for solving the uncertainty of sparse array MIMO Radar for 
uncorrelated Radar sources. Initially, MUSIC is used to obtain the DOA of all real 
and false targets, then by applying Davidon–Fletcher–Powell (DFP) algorithm, power 
values of all the targets are calculated. The power values of false targets tend to zero 
and are hence eliminated, leading to reduced uncertainty. A 2-dimensional unitary 
ESPRIT-based algorithm for range-Doppler estimation in FMCW Radar has been 
provided in [13]. Here, a 1-dimensional intermediate frequency signal is modified to 
a 2-dimensional virtual array signal, which is reconstructed into a complex-value 
matrix. Then, the eigenvalue decomposition of this matrix results in the evaluation of 
the range and Doppler parameters of the multiple targets. In [14], for bistatic MIMO 
Radar having sparse linear arrays, a Reduced Dimension ESPRIT-MUSIC has been 
suggested for the target angle estimation, which reduces computational complexities. 
In [15], the coupled C-ESPRIT-based method for azimuth and location angle 
evaluation uses a minimum variance technique with a conjugate rotation matrix for 
processing information from every array element without taking them into groups. In 
case of a sparsity-based target scenario, the distributed DOA method can be applied 
for the estimation of sparse vectors [16]. In [17], a MIMO Radar architecture with 
non-uniform sparse arrays used for both transmitter and receiver is considered for 
high resolution DOA estimation with a single snapshot, with the help of the mutual 
coupling method. The transmitter and receiver antennas are separated into dual sub-
arrays to obtain 2 sets of MIMO radars with sparse uniform virtual arrays. After 
spatial smoothing is applied, the virtual arrays can be used for DOA estimation. For 
angle and Doppler estimation in MIMO Radar, another signal processing technique 
called Group Sparsity (GS) is used, which considers that signals are sparse in 
structured groups like in range-Doppler bins [18]. The GS method is applied for the 
detection of multiple targets that have shared characteristics, like in range-Doppler 
bins and angles. Similarly, in [19], the estimation of the difference in Doppler is 
formulated as a GS-based reconstruction problem, where the search grid is shortened 
to one-fourth of the actual search grid for a multipath scenario. This helps to reduce 
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the computation cost and improves the performance. A signal processing method for 
DOA measurement based on Compressive Sensing (CS) theory is presented, which 
provides good resolution and accuracy while allowing an improved degree of design 
[20]. This algorithm can utilize configurations of sparse antennas with a smaller 
number of transmitter and receiver channels and a larger effective antenna aperture.  

In this study, a bistatic roadside radar scenario is considered, wherein the radar 
unit transmits waveforms that are subsequently utilized by a searching vehicle to 
detect a target vehicle. A sparse representation of the bistatic radar signal is 
formulated to facilitate the estimation of two-dimensional target localization—
comprising both range and DOA along with the Doppler shift of the target. By 
modeling the raw radar data using a sparse framework, the geometrical configuration 
of the bistatic system is reformulated such that the source vectors possess a 
generalized support set. This structural adaptation enables the effective application of 
the GS-based method. In parallel, classical subspace-based algorithms, namely 
MUSIC and ESPRIT, are also employed for estimating range, DOA, and Doppler. A 
comparative performance evaluation of these three techniques—GS, MUSIC, and 
ESPRIT—is conducted through computer simulations to assess their relative 
accuracies and robustness in bistatic automotive radar applications. 
The contributions of this paper include: 

i. This paper presents a performance analysis of MUSIC, ESPRIT, and Group 
Sparsity (GS) methods for target localization and Doppler estimation in a bistatic 
radar scenario. The algorithms are compared based on their estimation error 
levels. With a limited number of sensors, the GS method—using a sparse matrix 
representation—shows greater resilience to signal variations and noise, offering 
improved DOA estimation over MUSIC and ESPRIT. Additionally, larger data 
matrices enhance the performance of the GS method by reducing estimation 
errors and providing a more accurate system representation. 

ii. An analysis of location and Doppler estimation using the GS technique with 
varying numbers of antennas is presented, highlighting its relevance to MIMO 
radar design. Increasing the number of antenna elements results in narrower 
beamwidths, thereby enhancing angular resolution and improving the ability to 
distinguish closely spaced targets. 

iii. Radar Cross Section (RCS) quantifies the strength of the backscattered signal 
from a target and depends on factors such as target range, signal power, operating 
wavelength, and aspect angle [21]. The performance of the GS-based method is 
evaluated by analyzing the estimation errors in location and Doppler parameters 
under varying RCS conditions. 

The rest of this paper is categorized as follows: in section 2, a brief analysis of the 
FMCW bistatic Radar used as a sensor situated on the roadside is provided. In section 
3, algorithms for location and Doppler measurement of the target have been explained, 
which include the MUSIC, the ESPRIT and the Group-sparsity based algorithm. 
Section 3 contains the simulation results and performance analysis of these 
algorithms. Finally, the conclusion is drawn in section 4. 

 

2. Overview of FMCW Bistatic Radar 

According to figure 1 shown below, it is assumed that a searching vehicle at Rx is 
using the signals transmitted from the roadside Radar at Tx to locate the target vehicle 
at Tg. The vehicle in searching mode is assumed to be proceeding towards the Radar 
on the roadside, and the target vehicle is assumed to be receding from it. The 
transmitted signal is a frame of M number of narrowband FMCW pulses, having T as 
pulse repetition interval and Tc as duration of pulse transmission [22], [23]. The 
advantage of using FMCW Radar is that the velocity and the range can be determined 
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simultaneously with high range resolution and low Probability of Interception (LPI) 
[24]. 

 

Figure 1. Figure Label. 

A single chirp signal is represented as, 

��(�) = ������(�����.����)�      � ∈ [0, ��)
0                                ��ℎ������

                (1) 

in which, � =
�

��
 is assumed as the rate of modulation with B as the bandwidth of 

modulation, ��  as initial frequency and t as continuous time. This continuous time is 
classified into fast time (��) and slow time (��). Fast time is the time duration within a pulse, 

and the time period between pulses is defined as slow time. So, t is written as, 
� = ��+�� = �� + ���     ���[0, ��)                           (2) 

in which (mc = 0,1,…, Mc -1) is taken as the chirp index. Considering a periodic transmit 
signal, a sequence of M chirps can be presented as, 

�(�) = ���� + ���� = ��(��)                                   (3) 

It is assumed that the Radar on the roadside is static and the vehicles are in motion with a 
steady velocity, and their direction is forward in a way that the vehicle operating in 
searching mode is moving towards the Radar with a velocity �� and the vehicle assumed as 
a target is moving away from it, having a velocity of ��. Here, ‘s’ is used for parameters 
belonging to the direct path from the roadside Radar and ‘b’ is used for parameters 
belonging to the multipath from the bth target vehicle. The Doppler on the signal of the 
direct path present due to the mobility of the searching vehicle is observed to be 
�� = −��cos (��)                                                       (4) 

in which, ��  is taken as the DOA of the Radar on the roadside. Likewise, the Doppler 
estimated on every path of the multi-path signal is observed to be, 
�� = ��cos (��) + (�� − ��)�����,                            (5) 

�� = ������ �
��

������
sin (|�� − ��|)� + ��                       (6) 

in which, ��  is the range distance between the Radar on the roadside and the vehicle 
operating in searching mode, and the location of the Radar is known. ��  is the range 
distance between the vehicle taken as the target and the vehicle operating in searching mode. 
(��� =  �� + ���) with ��� as the range distance between the Radar on the roadside and 
the target vehicle and �� is the DOA of the vehicle assumed as the target. It is assumed that 
the searching vehicle has L number of antenna units forming a uniform linear array (ULA), 
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having spacing ‘d’ in-between the units. So, the mathematical model for the direct-path 
signal obtained at the vehicle working in searching mode corresponding to the Radar is, 

����, �, ��� = ��� �� − ����, ���� ������(�),                            (7) 

And ����, ��� =
��

�
+

��

�
(�� + ��)                                          (8) 

in where, �� is the delay in time, the delay in phase related to the first antenna unit, is 

(��(�) =
��������

�
�), and c is the velocity of light. The amplitude of the received signal of 

the direct path  

�� = �
��������

(��)���
���

�                                                                        (9) 

in where, ��  is the receiver gain. Likewise, the mathematical model for one multi-path 
signal obtained at the vehicle working in searching mode corresponding to the target vehicle 
‘b’ is, 

����, �, ��� = ��� �� − ����, ���� ������(�),                                   (10) 

And ����, ��� =
���

�
+

��

�
(�� + ��)                                               (11) 

in where, �� is the delay in time, the delay in phase related to the first antenna unit, is 

(��(�) =
��������

�
�), and σ is the Radar Cross Section (RCS). The amplitude of the received 

signal of the multi-path  

�� = �
���������

(��)���
���

����
�                                                                            (12) 

Thus, the received signal is a combination of both paths. The RCS value is obtained as, 

� =
(��)���

���
����

�

��������(��)�         (13) 

To obtain the embedded data, cross-correlation is done of this signal with a signal similar 
to ��(�). For B number of targets, the signal with the intermediate frequency (IF) is given 
as, 

���, �, ��� = ∑ ��(�, �, ��)�
��� ��(��)∗ + ���, �, ��� ,                         (14) 

in this, w is taken as the additive white Gaussian noise (AWGN). Then, the de-chirped 
signal is sampled at a rate of ��, so that the sampling index is (n = 0,1,…,N-1) where, the 
fast-time samples are given as � = ����. Finally, after mathematical calculations, the de-
chirped signal is expressed in terms of l, fast time index n, and slow time index m, 

�[�, �, �] = ∑ �� exp �−�2� �
����

�

�

��
+

����

�
�� +

��������

�
��� + �[�, �, �]�

���    (15)                                    

in where, �� = �������(
�����

�
) 

Considering the Nyquist theorem, the maximum detectable multi-path range can be 
obtained as, 

���� =
���

�
                                                                                    (16) 

The raw data of �[�, �, �] can be presented in tensor form � ∈ ��×�×�, so that, 
� = ∑ ��(��°��°��) + ��

���                                                     (17) 

in where, � ∈ ��×�×� is AWGN. 

A (L*1) column vector, �� = [1, �
�����

��������
�

�(�)
, … , �

�����
��������

�
�(���)

]� 

A (M*1) column vector, �� = [1, �����(
����

�
(�)�), … , �����(

����
�

(���)�)]� 
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A (N*1) column vector, �� = [1, �
�����

��� �
�

 
�

��
�
, … , �

�����
����

�
 
���

��
�
]�                        (18) 

Considering that the parameters of the searching vehicle (��, ��). Then ��� can be presented 
as,  

��� = ���
� + ��

� − 2���� cos(�� − ��) + ��                               (19) 

Then, the antenna units and the domains of fast-time are assembled against those of the 
slow-time. The tensor Y can be modified in the format of a matrix, �����×�, in a way, 
� = ∑ ��(����

�)�
��� + �                                                            (20) 

in where, �� = (�� × ��) and � ∈ ���×� is AWGN. 
Lastly, Y can be presented as, 
� = ���� + �                                                                           (21) 
in where, � ∈ ���×� consists of range-DOA data, � ∈ ��×� consists of the Doppler data, 
and � ∈ ��×� consists of the complex amplitude.  
For representation of bistatic localisation evaluation in sparse format, a 2-dimensional polar 
grid consisting of size Gp is assumed to obtain the range and the DOA (���, ���) and 

evaluate (��, ��), with (gp = 1,2,…,Gp) presents the gpth index of the grid. Next, a steering 
matrix containing values from range-DOA, �� ∈ ���×��  is created with the gp-th column 

��� = (�̂�� × ���), with  

��� = [1, �
�����

���������

�
�(�)

, … , �
�����

���������

�
�(���)

]�                      (22) 

and, �̂�� =

⎣
⎢
⎢
⎢
⎢
⎡

�

�����
�����

�  ���
� � ���� ��  ���(������)� ���

�
 

�

��
�

�

�����
�����

�  ���
� � ���� ��  ���(������)� ���

�
 
���

��
�

⎦
⎥
⎥
⎥
⎥
⎤

                      (23) 

�� = ����
� + �                                                                                     (24) 

In this, ��
� ∈ ���×� is defined as the sparse matrix of data, where the mth column has B 

non-zero values related to complex coefficients of the targets. 
For a representation of bistatic Doppler evaluation in sparse format, the Doppler grid 
consisting of size Gd is assumed to obtain the velocity (���) and evaluate (��), with (gd = 

1,2,…, Gd) presents the gdth index of the grid. Next, a Doppler steering matrix �� ∈ ��×�� 

is created with the Vgd in V, so that, 
��� ∈ [����, ���� ]  
in where, 

���� = ��� ��������(����
) + (���� −  ��) ���(����

)�                         (25) 

���� = ��� ��������(����
) + (���� −  ��) ���(����

)�                        (26) 

����
= ������ �

�����(��������
�)

�����
� ���

��������� ���(�������)
� + ����

      ��� ��� ���            (27) 

����= minimum value of the probable forward velocity of the vehicle taken as the target, 
����= maximum value of the probable forward velocity of the vehicle taken as the target. 
Then, �� = ����

� + ��                                                      (28) 

with, ��
� ∈ ���×�� , is defined as the sparse matrix of data, where the lnth column has B 

non-zero values related to complex coefficients of targets. 
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3. Location and Doppler estimation algorithms 

A roadside Radar system transmits a sequence of chirp signals, which is used by a 
searching vehicle to detect a target vehicle. Signals reflected from the target vehicle 
and clutter are a combination of various Radar echoes along with additive noise. This 
noise is reduced, and detection of the echoes obtained from different objects that are 
distinguishable in the domains of the range, the Doppler and the DOA, is done. 

3.1. MUSIC algorithm: 
In this subspace-based technique, the covariance matrix is disintegrated into both signal 
subspace and noise subspace. The steering vectors are perpendicular to the noise, and the 
required direction is obtained from the peak value in the spectrum of spatial power.  
Algorithm 1: The procedure for the MUSIC method can be presented as [25]:  
Considering the signal models as presented in equations 14 and 24, the steering matrix is 
presented by, Pg. The covariance matrix is presented as,  
��� = ����(��)� + ���                                                (29) 

in where,  �� is the covariance matrix of the source signal, I is the identity matrix, H denotes 
the Hermitian response, and �� is the variance of the sensor noise vector. The Rcm matrix 
can be disintegrated into matrices of eigenvectors and eigenvalues. The MUSIC algorithm’s 
spatial spectrum is given as: 

������ =  1 �(��)�����
��� �⁄                                            (30) 

with �� as the subspace of noise containing the eigenvectors relative to the eigenvalues 
obtained by eigen disintegration of ���. 
 
3.2. ESPRIT algorithm: 
This algorithm is computationally less complex than MUSIC as it does not consider all 
direction vectors. The subspace of incident signals is extended by two responses that are 
displaced from each other by a known vector, and from these, the DOA can be evaluated. 
Algorithm 2: The procedure for the ESPRIT method can be presented as [25]:  
a) Considering the de-chirped signal model as shown in equation 24, in where, �� is a 

range-DOA steering matrix,  ��
� ∈ ���×� is defined as a sparse matrix of data and W 

is AWGN. 
b) The covariance matrix is created by collecting received signal data over time. The 

eigenvalue disintegration of this covariance matrix is done to get the signal subspace 
and noise subspace. Then the steering matrix �� is considered. 

c) Using the rotational invariance characteristic of the subspace of the signal, the rotation 
matrix is calculated. Finally, DOA is estimated from the eigenvalues of this matrix. 

 
3.3 Group-Sparsity method: 
In this algorithm, the structured sparsity patterns of the received signals are studied for the 
detection of the target’s location and DOA. It is considered that the source vectors have a 
common support set (e.g. range-Doppler bins). 
Algorithm 3: The procedure for the ESPRIT method can be presented as:  
a) The raw Radar data is stored as shown in equation 20. 
b) A rectangular-shaped search grid is generated having length Gp, and the Cartesian 

location coordinates are changed to polar coordinates. 
c) Then, the range-DOA steering matrix is created, and the value of ��

� is evaluated. 
d) A search for the peak is conducted to obtain the coordinates. 
e) Transpose of raw Radar data is obtained. 
f) By using proper values of ���� and ���� , and �� and all �� values, ���� and ���� 

are calculated. 
g) A Doppler search grid is generated having size Gd.  
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h) Then the Doppler steering matrix Vg is created, with its gd-th column corresponding to 
Vgd. Then the value of ��

� is evaluated. 
i) A search for the peak is conducted to obtain the Doppler values. 
j) Using these evaluated coordinates, the values of �� and �� are estimated. Finally, with 

these values, �� is obtained.  
k) This (�, �)� and �� values are calculated for all the B targets. 

 

4. Performance analysis 
 
Results are obtained from computer simulations using MATLAB to analyse the 
performances of the MUSIC, ESPRIT and GS algorithms for estimation of the location and 
the Doppler of a particular target vehicle, under varying levels of noise. The Radar 
parameters are provided in Table 1.  

Table 1. The parameters of the Radar for the simulation process 

Parameters Value 
Centre frequency  77 GHz 
Chirp bandwidth  150 MHz 

Sampling frequency 5 MHz 
Modulation period 30 us 

Pulse repetition frequency 35 us 
No. of chirps 128 

 
A single target vehicle is considered, and different algorithms are used for estimation of its 
location and Doppler. For the GS method, different tests are conducted to observe the result 
of the increment of data size on the working capability of the algorithm. This is done by 
changing the quantity of processed columns Q from the signal matrix, such as Q = 1, 4, 8, 
each test conducted with 50 iterations. In every iteration, a different noise signal is 
generated, and the Cartesian coordinates of the target’s position and Doppler parameter are 
obtained from a consistent distribution limited by two adjoining grid points from the relative 
search grids. The performance is evaluated by the Root Mean Square Error (RMSE) of 
estimation versus the increasing levels of Signal to Noise Ratio (SNR). The RMSE 
measures the average difference between the estimated value and the actual value, thus 
indicating the accuracy of the algorithm.  The MUSIC and ESPRIT algorithms were applied 
with 8 columns, which are processed (Q) from the matrix of signal values, for the capability 
to use the exact search grid as used by the GS method.  
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Figure 2. A comparative analysis of RMSE of Doppler v/s SNR for 1 target 
obtained with the Group-sparsity method, the MUSIC and the ESPRIT. 

 

Figure 3. A comparative analysis of RMSE of location v/s SNR for 1 target 
obtained with the Group-sparsity method, the MUSIC and the ESPRIT. 

As observed from figure 2, the RMSE of the Doppler value is highest for the MUSIC and 
the ESPRIT algorithms and lowest for the GS-based method, specifically for Q = 8, for 
increasing values of the SNR. For example, at the SNR value of 136dB, the RMSE of 
Doppler for MUSIC is 0.422m/s, the same for the ESPRIT is 0.3229m/s, the same for the 
GS-based method with Q = 1 is 0.3005m/s, the same for the GS-based method with Q = 4 
is 0.2729m/s and the same for the GS-based method with Q = 8 is 0.2183m/s. Similarly, in 
figure 3, at the SNR value of 136dB, the RMSE of location for the MUSIC is 63.45m, the 
same for the ESPRIT is 62.52m, the same for the GS-based method with Q = 1 is 61.01m, 
the same for the GS-based method with Q = 4 is 61.03m and the same for the GS-based 
method with Q = 8 is 60.5m. As lower values of RMSE prove improved detection of target 
parameters, it can be stated that the Group-sparsity method performs better than both the 
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MUSIC and the ESPRIT algorithms, for the estimation of location and Doppler of the target 
vehicle. The reason is that, in this bistatic Radar scenario, the source vectors have a common 
support set, and this allows more accurate estimation of target parameters by using the GS 
method, compared to the MUSIC or the ESPRIT. Both the MUSIC and the ESPRIT 
algorithms are based on signal subspace techniques and consider independent sources. But 
when a limited number of sensors are present, like in this case with roadside Radar being 
used by multiple users, a sparse matrix representation makes the algorithms resilient to 
signal variations. Additionally, the MUSIC and ESPRIT algorithms are susceptible to noise, 
whereas the GS method is more robust to it. Thus, the GS-based algorithm provides 
improved estimation of the DOA, even in the presence of external noise. Among the tests 
done using the Group-sparsity method, it can be noted that the level of error reduces as the 
number of Q is increased. This shows that increasing the amount of data helps to attain a 
regularization effect, which leads to improved detection of the DOA of the target vehicle. 
If the amount of data is increased, a better representation of the system is obtained for 
understanding it. 

If the number of elements of the antenna is increased, the beam of the antenna becomes 
narrower, leading to improved angular resolution and more accurate differentiation between 
closely placed targets. This will lead to better estimation of the DOA of the target vehicle, 
which eventually results in a lower RMSE value. To evaluate this property, simulations are 
done with the Group-sparsity method for Q = 1, with a varying number of antenna elements, 
and the tests are conducted for 50 iterations. 

 

Figure 4. RMSE of Doppler v/s SNR obtained with the GS method (for Q = 1) 
while varying the number of antenna elements for 1 target. 
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Figure 5. RMSE of location v/s SNR obtained with the GS method (for Q = 1) 
while varying the number of antenna elements for 1 target. 

As observed from figure 4, the RMSE of the Doppler estimation is highest when the number 
of elements of the antenna is 9 and the value is lowest when the number of elements of the 
antenna is 45, for increasing values of the SNR. For example, at the SNR value of 132dB, 
the RMSE of Doppler for the number of antenna units of 9 is 0.3456m/s, and this value 
decreases corresponding to the increasing antenna size till the same value for the number 
of antenna units of 45 is 0.1907m/s. Similarly, in figure 5, at the SNR value of 132dB, the 
RMSE of location for the number of antenna units of 9 is 62.13m, this value decreases 
corresponding to the increasing antenna size till the same for the number of antenna units 
of 45 is 59.81m. 
Since the error level is lowest with the GS method for Q = 8, as per figures 2 and 3, 
simulations are done with the GS method for Q = 8, with a varying number of antenna 
elements, and the tests are conducted for 50 iterations. 

 

 

Figure 6. RMSE of Doppler v/s SNR obtained with the GS method (for Q = 8) 
while varying the number of antenna elements for 1 target. 
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Figure 7. RMSE of location v/s SNR obtained with the GS method (for Q = 8) 
while varying the number of antenna elements for 1 target. 

As observed from figure 6, the RMSE of the Doppler estimation is highest when the number 
of elements of the antenna is 9 and the value is lowest when the number of elements of the 
antenna is 45, for increasing values of the SNR. At the SNR value of 132dB, the RMSE of 
Doppler for the antenna units of 9 is 0.3496m/s; this value decreases corresponding to the 
increasing antenna size and the same for the antenna units of 45 is 0.1858m/s. Similarly, in 
figure 7, at the SNR value of 132dB, the RMSE of location for the number of antenna units 
of 9 is 61.89m, this value decreases corresponding to the increasing antenna size and the 
same for the number of antenna units of 45 is 60.02m. 

The detection of the target with the highest RCS is dependent on the aspect angle, along 
with the shape of the vehicle. The target RCS is defined as the intensity of the backscattered 
energy that has the same polarization as the Radar’s receiving antenna. SNR is the ratio of 
the desired Radar signal power to the unwanted noise signal power. A higher value of RCS 
means a stronger signal echo from the target, and thus, less error is present in the evaluation 
of location and Doppler of the particular target. To evaluate this property, simulations are 
done with the Group-sparsity method for Q = 8, while changing the RCS values to 0.1 m2, 
1 m2 and 10 m2, and the tests are conducted for 50 iterations. 
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Figure 8. RMSE of Doppler v/s SNR obtained with the GS method (for Q = 8) 
while varying the RCS values of 1 target. 

 

Figure 9. RMSE of location v/s SNR obtained with the GS method (for Q = 8) 
while varying the RCS values of 1 target. 

As it is observed from figure 8, the RMSE for the Doppler estimation is highest when the 
RCS value is 0.1 m2 and the value is lowest when the RCS value is 10 m2, for increasing 
values of the SNR. For example, at the SNR value of 132 dB, the RMSE of Doppler for the 
RCS value of 0.1 m2 is 0.3605m/s, the same for the RCS value of 1 m2 is 0.2335m/s, and 
the same for the RCS value of 10 m2 is 0.189m/s. Similarly, in figure 9, at the SNR value 
of 132dB, the RMSE of location for the RCS value of 0.1 m2 is 62.85m, the same for the 
RCS value of 1 m2 is 62.06m, and the same for the RCS value of 10 m2 is 61.94m. 

Conclusion  
 

Journal For Basic Sciences ISSN NO : 1006-8341

Volume 25, Issue 6, 2025 PAGE NO: 317



 

 

A sparse representation of the bistatic radar signal model is employed, on which the GS 
method, MUSIC, and ESPRIT algorithms are applied for target localization and Doppler 
estimation. MATLAB simulations validate the performance of these techniques, revealing 
that the GS method consistently outperforms MUSIC and ESPRIT in terms of estimation 
accuracy. Using the GS-method and by varying the quantity of processed columns of the 
data matrix (Q), it is further observed that this method with a higher number of columns 
provides the lowest level of error. To obtain additional knowledge on this, simulations were 
performed with the GS method while changing the number of antenna elements, once for 
Q = 1 and then for Q = 8. Results indicate that increasing the number of antennas enhances 
angular resolution and reduces error levels. Moreover, experiments with varying Radar 
Cross Section (RCS) values demonstrate that higher RCS—implying stronger reflected 
signal power—leads to lower estimation errors; for example, an RCS of 10 m² results in 
substantially lower errors compared to an RCS of 0.1 m². Future work may extend this 
analysis to multi-target scenarios and include comparisons with other advanced algorithms 
such as Root-MUSIC and Compressive Sensing. 

Further work can be conducted by increasing the number of targets and observing the 
effect on error levels. Also, tests can be conducted to compare the effectiveness of 
algorithms, such as Root-MUSIC and the Compressive Sensing technique. 
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