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Abstract: This study explores wave propagation in a rotating, two-dimensional magneto-
thermoelastic medium heated by a non-Gaussian laser pulse, using the refined multi-phase-
lag (MPL ) thermoelasticity model with memory-dependent derivatives. It encompasses Lord-
Shulman, simple phase-lag, and Green-Naghdi II theories as special cases of MPL model. 
Laplace and Fourier transforms are applied to derive analytical solutions, with numerical 
inversion performed by the Zakian method in Mathematica 10. Graphs illustrate the effects of 
different theories, rotation, and magnetic fields on displacement, temperature, and stress. 
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1. Introduction 
 

Neumann’s uncoupled thermoelasticity theory has two major limitations: it lacks an elastic 
term in the heat conduction equation and predicts infinite heat wave speed due to its parabolic 
nature. To address this, Biot [1] developed the coupled thermoelasticity theory, which links 
thermal and elastic effects but still retains the issue of infinite speed of heat propagation. Lord 
and Shulman [2] later improved upon this by introducing a relaxation time, making the heat 
conduction equation hyperbolic and ensuring finite propagation speeds for thermal and elastic 
waves. Their model, part of extended thermoelasticity theory (ETE), replaces Fourier’s law 
with the Maxwell-Cattaneo law. De et al. [3] applied the Lord-Shulman model to study 
thermal damage in living tissues caused by hyperthermic perfusion. 
 
Following the development of the first generalized theory, numerous researchers have 
proposed additional generalized models to better interpret and match experimental 
observations. Zenkour [4] proposed a unified generalized refined multi-phase-lag (RPL) heat 
transport equation that incorporates and extends all the previously developed theories: 
 
_____________________________ 
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Here � means thermal conductivity, � refers to the temperature measured above the baseline 
temperature ��, �� represents the specific heat capacity under constant strain, � stands for the 
thermal modulus, � means the mass density. According to the applied thermoelasticity theory, 
the parameter � takes value either 0 or 1. Also, �� denotes the first relaxation time, ��  and �� 
are the phase-lags of the heat flux and of temperature gradient respectively. In the context of 
the RPL theory, the value of �, � may take values of 5 or more as needed.  
 
This theory encompasses several thermoelastic models including the coupled thermoelasticity 
theory (CTE), Lord and Shulman's generalized theory (LS), Green and Naghdi type II (GN 
II), the simple phase lag (SPL), and the refined phase lag (RPL) model by varying the 
parameters ��, ��, �� and �. The refined model has been widely applied to develop 
frameworks for various physical phenomena. For instance, Mashat and Zenkour [5]  studied 
nanobeam vibrations, Zenkour [6] explored thermo-diffusion in cylinders, Purkait and 
Kanoria [7] examined functionally graded materials under gravity, and Bhattacharya and 
Kanoria [8] investigated elastothermo-diffusive effects with harmonic heat sources. 
 
In recent years, fractional derivatives have gained significant attention across various fields 
for their ability to model memory effects in physical systems. Diethelm [9] advanced the use 
of the Caputo derivative [10], which employs a fixed kernel function��(� − �). However, this 

fixed kernel limits flexibility in capturing a wide range of real-world behaviors. To overcome 
this limitation, Wang and Li [11] introduced the memory-dependent derivative (MDD), which 
allows the kernel function on the interval [� − �, �] to be freely chosen. This approach 
enhances the model’s ability to represent time-delay and memory effects more accurately. 
The kernel function �(� − �)can be chosen freely as follows: 
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�
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�
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Unlike fractional derivatives, memory dependent derivatives (MDD) offer a more intuitive 
physical interpretation by directly linking the present state to past values through a freely 
chosen kernel function. This flexibility makes MDD especially suitable for modeling real-
world problems in generalized thermoelasticity. Several pioneering studies have further 
advanced this concept, as noted in the literature [12, 13]. Importantly, MDD reduces to the 
classical derivative as � ⟶ 0, maintaining consistency with traditional models. Recently, 
various problems in generalized thermoelasticity using MDD have been explored in studies 
such as those cited in [14–18]. 
 
As a coupled theory, magneto-thermoelasticity integrates magnetic, thermal, and elastic 
fields, where magnetic behavior is governed by Maxwell’s equations. This field has attracted 
growing interest due to its wide-ranging applications in geophysics, plasma physics and 
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nuclear science. Studying wave propagation in rotating magneto-thermoelastic media is 
essential for accurately modeling conditions such as the Earth's rotation and magnetic field 
effects on seismic behavior. Significant contributions in this area have been made by Sur et 
al. [19], Mondal et al. [20,21], and Purkait et al. [15], particularly regarding the effects of 
magnetic fields. Many researchers have further explored thermoelastic responses under 
combined magnetic and rotational influences. Notably, Das and Kanoria [22] investigated 
finite thermoelastic wave propagation in an unbounded rotating medium subjected to a 
periodically varying heat source in the presence of a magnetic field. 
 
Pulsed and ultra-short lasers, operating on nanosecond to femtosecond timescales, have 
attracted considerable interest for generating thermal waves in solids due to their widespread 
applications in material processing and non-destructive testing. Zenkour et al. [23, 24] and 
Kutbi et al. [25] explored refined two-temperature and multi-phase-lag theories in 
thermoelastic media subjected to pulsed laser heating. Additionally, De et al. [26] and Purkait 
and Kanoria [27] studied the influence of magnetic fields, gravity, and inclined loading on 
two-dimensional thermoelastic media using generalized and dual phase lag models. 
 
Considering these developments, the present study investigates the impact of rotation and 
magnetic fields on a two-dimensional thermoelastic medium with memory effects, using the 
refined multi-phase-lag (MPL) model, which encompasses several existing theories. 
Analytical expressions for displacement, stress, and temperature under pulsed laser heating 
are obtained using Laplace and Fourier transforms, with numerical inversion of the double 
transform carried out in MATHEMATICA 10. The Zakian method [28] is employed for the 
numerical inversion of the Laplace transform. Graphical results are presented to compare the 
refined model with other established thermoelastic theories. 
 

2. Formulation of the problem 

The medium under consideration is homogeneous, isotropic, and perfectly conducting, and it 
is exposed to a constant magnetic field oriented along the z-axis, � = (0, 0, ��). This 
medium undergoes uniform rotation with angular velocity Ω = Ω�, where � is a unit vector 
aligned with the axis of rotation (as illustrated in Figure 1). In the rotating frame of reference, 
a fixed coordinate system is assumed within the rotating medium, the equation of motion 
includes two additional terms: the centripetal acceleration Ω × (Ω × �), which accounts for 
time-varying motion, and the Coriolis acceleration 2Ω × �̇.  

For a two-dimensional problem, we consider � and � as the dynamic displacement 
components in the � and � directions, respectively, and � as the temperature distribution.  
 
These variables are represented as: 

� = �(�, �, �), � = �(�, �, �), � = �(�, �, �) 
When free charge density and displacement current are absent, the behavior of the 
electromagnetic field is governed by the simplified form of Maxwell’s equations, given as: 

∇ × ℎ = � +  ��

��

��
              (3)                           ∇ × � = −��

�ℎ

��
                    (4) 

� = −�� �
��

��
× ��            (5)                           ∇. ℎ = 0, ∇. � = 0                   (6) 
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where ℎ = (0, 0,  ℎ�) denotes induced magnetic field, �� represents electric permittivity, �� 
means magnetic permeability, E is the induced electric field, � = (��, ��, 0), J denotes 
conduction current density and �(= �� + ℎ) represents total magnetic field. 

                                                    
                                                     Y 
 
 
 
 
                          Pulsed Laser 
                                                           Thermoelastic Medium                                                         
              Ω  
 
 
                         Z 
                        Magnetic Field 

 

Figure 1. Geometry of the problem 

The stress-displacement-temperature relations are expressed as follows: 

��� = (� + 2�)
��

��
+ �

��

��
− �(� − ��)    (7)    ��� = (� + 2�)

��

��
+ �

��

��
− �(� − ��)    (8) 

                  ��� = � �
��

��
+

��

��
�                        (9) 

where �, � are the Lame’ constants, T is the temperature measured above the baseline 
temperature �� and � = (3� + 2�)��, �� is the coefficient of linear thermal expansion. 

The strain-displacement relations are given by:          ��� =  
�

�
���,� + ��,�� 

 
In the presence of Lorentz forces, the equations of motion can be written as: 
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���� are Lorentz force’s components. 

 
Within the framework of memory dependent derivative (MDD), the heat conduction equation 
in the RPL model, considering the presence of a heat source �, is expressed as follows: 
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Depending on the values of ��, ��, ��, �, � and �, Eq. (12) simplifies to the heat conduction 
equation of CTE, LS theory, GN II model, SPL and RPL theory incorporating memory 
dependent derivative.  
 
For convenience, the following non-dimensional quantities are introduced: 
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                                   (13)  

Removing the dashes for convenience and using the quantities stated in Eq. (13), Eqs. (10-12) 
reduced to the non-dimensional form as follows: 
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Also the stress components become:  

��� = 2
��

��
+ (�� − 2)� − ���       (17)                  ��� = 2

��

��
+ (�� − 2)� − ���       (18) 

��� = �
��

��
+

��

��
�                        (19) 

Also                                         � =  
��

��
+

��

��
                                 (20) 

Now in Eq. (16), 
(I) �� = �� =  �� = 0 and � = 1, yields the heat conduction of CTE theory based on MDD. 

(II) � = 1, ��, �� → 0 and �� > 0, yields the heat conduction of L-S theory based on MDD. 

(III) ��, �� → 0 , � = 0 and �� = 1, yields the heat conduction of G-N(II) theory based on 
MDD. 
(IV) �� =   ��, �� ≥  0, � = 1, � = 1 and ��

� = 0,  yields heat conduction of SPL based on 

MDD. 
(V) �� =   �� > �� ≥ 0, � = 1 and � ≥ 1, yields the heat conduction of RPL based on MDD. 

 
To neglect the effects of centrifugal stiffening, a low speed assumption is adopted in the 
subsequent analysis. Now from Eq. (14) and Eq. (15) we get 

�(1 + ��)∇� −
��

���
+ Ω�� � = ∇�� +  2Ω

∂ζ

∂t
                                  (21) 

�∇� − �� �
��

���
− Ω��� � = − 2Ω��

∂e

∂t
                                             (22) 

where �� =
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��� is Laplace’s operator in two-dimensional space. 

Also,                                     � =  
��

��
−

��

��
                   (23) 

 

Journal For Basic Sciences ISSN NO : 1006-8341

Volume 25, Issue 6, 2025 PAGE NO: 243



The laser-induced heat input is mathematically represented as follows [29] 

� =
����

2���
�

��
��

��  �����
�(�)                                                        (24) 

where �� means laser intensity, � represents beam radius and �� characterizes the depth at 
which the laser energy is absorbed. 
The definition of temporal profile �(�) is as follows: 

�(�) =
�

��
� �

�
�

��                                                                           (25) 

where ��  denotes the time interval over which the laser pulse is applied. 

The initial conditions are:       � = �̇ = � = �̇ = � = �̇ = 0 
The boundary condition on � = 0are given by 

���(0, �, �) = ���(0, �, �) = 0;   �(0, �, �) = �(� − |�|)�� ��                (26) 
 

3. Method of solution 

Applying Laplace transformation defined as 

�(̅�, �, �) = ℒ[�(�, �, �)] = � �(�, �, �)����

�

�
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to the memory-dependent derivative operator ��
� and using the convolution theorem, we get, 
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Depending on the choice of the kernel function�(� − �), in Eq. (2) of the introduction, we 
obtain the following 
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On taking Laplace and Fourier double transformation, Eqs. (16), (21) and (22) reduce to   

(����� − ��)�̅� − ���̅� = ����� ����                                            (29) 

(���� − ��)�̅� − (�� − ��)�̅� − ���̅� = 0                                    (30) 

(�� − ��)�̅� −  ����̅� = 0                                                                 (31) 
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The transformed temperature �̅�  satisfies the following sixth-order ordinary differential 

equation by eliminating �̅� and �̅� between Eqs. (29) - (31): 

(�� −  ��� +  ��� − �)�̅� =
�
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� + (������ −
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By solving Eq. (32) under the condition that �̅� → ∞ as � → ∞ ,we get, 
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�

���

� ���� + ����� ����                                                        (33) 

Where ��’s (� = 1,2,3) are the roots with positive real part of the characteristic equation 

corresponding to Eq. (32), ��’s (� = 1,2,3) represents the arbitrary constants,  
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��(�����������)��
��(������� �������)
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Substituting Eq. (33) in Eq. (29) we obtain 

�̅� = � �����

�

���

� ���� + ����� ����                                                   (34) 

and again applying Eq. (34) in Eq. (31) we derive, 
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Then using the result of Eq. (34) in Eq. (20) we obtain, 

��� = � �����

�

���

� ���� + ����� ����                                                   (36) 

and substituting Eq. (36) in Eq. (23) we derive, 

�̅� = � �����
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Where��� =  
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Upon substituting �̅�, �̅�, ���  and �̅�, into Eqs. (17) - (19) we get 
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����� = � �����
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Where   ��� = −2����� + (�� − 2)��� − ��,  �� = −2���� + (�� − 2)�� − ���� 

                ��� = (�� − 2)��� − 2����� − ��,      �� = (�� − 2)�� − 2���� − ���� 

                ��� = −����� − �����,      �� = −���� − ���� 
Applying the boundary conditions specified in Eq. (26), Eqs. (33), (38), and (40) are modified 
as follows: 

� ��� ���� + ����� ���� = �
2

�

sin(��)

�(� + �)
                                       (41) 

� �����

�

���

� ���� + ����� ���� = 0                                                    (42) 

� �����

�

���

� ���� + ����� ���� = 0                                                   (43) 

The unknown parameters��’s (� = 1,2,3) can be obtained by solving Eqs. (41) - (43). 

 

4. Validity of the Model 

To validate the derived equations and results, a comparison is made with the existing study 
conducted by Othman and Mondal [30]. Their work explores the influence of memory-
dependent derivatives in a two-dimensional rotating medium in the context of the Lord–
Shulman generalized thermoelasticity theory. Accordingly, in this present problem, when the 
magnetic field is neglected, the governing equations reduce to those obtained by Othman and 
Mondal [30] under the specific conditions � = 1, �� = �� = 0, � = 0. This equivalence can 

be established analytically as follows. 

By imposing �� = 0, the dimensionless form of the equations of motion is derived from Eqs. 
(14) and (15), which then simplify to: 

(�� − 1)
��

��
+ ∇�� − ��

��

��
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���

���
−  Ω�� − 2Ω

∂v

∂t
�                  (44) 

(�� − 1)
��
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+  ∇�� − ��
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��
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���

���
−  Ω�� + 2Ω

∂u

∂t
�                   (45) 

The stress components derived in this study closely resemble those reported by Othman and 
Mondal [30]. 
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The heat conduction equation can be obtained from Eqs. (16) by setting � = 0,�� = �� =

 0, �� =  τ, eliminating the heat source and neglecting the magnetic field. Under these 
conditions, Eq. (16) reduces to 

                                           ∇�� =  (1 + ���)��̇ + ��̇�                                                      (46) 
Equations (44), (45) and (46) are identical with the equations (33) and (34) respectively of 
Othman and Mondal [30]. 
 

5. Numerical Result and Discussion 

The expressions for displacements, stresses, and temperature distributions are obtained in the 

transformed domain as �̅�(�, �, �). The inverse Fourier transform is carried out numerically, 
while the inverse Laplace transform is performed using the Zakian method. For numerical 
analysis, magnesium has been selected as the material, following the work of Dhaliwal and 
Singh [31]. All parameter values used in the calculations are expressed in SI units. The 
constants employed in this study are listed as follows: 
 

� = 1.7 × 10�N/K sec,   �� = 1.78 × 10�����,    �� = 1.04 × 10�m�/K, 

� = 3.278 × 10��N/m�, � = 2.17 × 10��N/m�,   �� = 10�J/m� 

� = 1.74 × 10�kg/m�, � = 0.1sec��,     �� = 293K 

� = 0.2�m, � = 0.9, �� = 25/m, �� = 1 

Table 1 represents a comparison of �, ��� and ��� for different values of � and � taking � =

0.5, � = 0.9, � = � = 1, �� = 10� and Ω=1 in case of RPL model. Now if � = � = 5 and 
� = � = 6 accuracy up to 5th decimal places is observed from the table. 

 

Table 1: Distribution of �, ��� and ��� for Different Values of � and � 

RPL � ��� ��� 

M=N=1 −0.335043 6.06567 −2.17428 
M=N=2 −0.339565 6.15785 −2.19029 
M=N=3 −0.34152 6.18514 −2.20038 
M=N=4 −0.34164 6.20935 −2.20421 
M=N=5 −0.34165 6.29814 −2.20442 
M=N=6 −0.34165 6.29814 −2.20442 

 

The displacement components �, � temperature � and the stress components ���, ��� 

distributions were evaluated on the �-axis. The computations are performed for four different 
theories: RPL (� = 1, �� = 0.01, �� = �� = 0.02, � = 7, � = 7), SPL (� = 1, �� =

0.01, �� = �� = 0.02, ��
� = 0, � = 1), LS model (� = 1, �� = �� = 0, �� = 0.01, � = 1) 

and GN-II model (δ= 0, �� = �� = 0, �� = 1). 
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Figure 2-6 are plotted to show the impact of four models (RPL, SPL, LS and GN-II) on all 

physical quantities �� = 10� with respect to kernel functions �(� −  ��) =  �1 − 
�� ��

�
�

�
at a 

fixed time � = 0.9when the magnetic field is present for the rotating medium (� = 1.0). The 
delay time � = 0.1 and depth � = 1.0 are considered for all the figures 2-6. 

         

         Figure 2. Distribution of � vs. �                         Figure 3. Distribution of � vs. � 

Figure 2 illustrates the distribution of horizontal displacement � with respect to distance �. 
The results show that the displacement remains compressive across all considered models 
(RPL, SPL, LS, and GN-II), with the maximum values occurring near the boundary. Among 
them, the RPL model consistently exhibits the highest displacement throughout the domain. 
Furthermore, for � < 0.23, the displacement magnitude follows the order: LS > SPL > GN-II. 
However, beyond � = 0.23, this order changes to SPL > GN-II > LS, while still maintaining 
compressive behavior. Ultimately, the displacement magnitude diminishes to zero for all 
models. 

       

      Figure 4. Distribution of T vs. x                       Figure 5. Distribution of ��� vs. x 

Figure 3 shows the behavior of vertical displacement � with respect to distance �. For both 
the RPL and LS models, the displacement � attains its peak at � = 0 and gradually decreases 
to zero. In the RPL model, � remains positive within the range 0 ≤ � ≤ 0.16 and becomes 
negative for 0.16 ≤ � ≤ 0.30. In contrast, for the LS model, � stays positive up to � = 0.6. 
Meanwhile, the SPL and GN-II models exhibit compressive vertical displacement (negative 
values) in the range � = 0 to � = 0.3, after which the displacement vanishes. 
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Figure 4 depicts the temperature distribution � as a function of distance �. In all cases, the 
temperature reaches its maximum at � = 0, corresponding to the location of thermal shock 
application, and subsequently decreases with increasing distance. The RPL model exhibits the 
highest temperature values up to � = 0.6, beyond which the temperature profiles for the RPL, 
SPL, and LS models converge and diminish, approaching zero near � = 0.8. In contrast, the 
GN-II model displays a more rapid temperature decay, with the profile vanishing shortly after 
� = 0.6. 
 
Figure 5 represents the behavior of normal stress σ�� with respect to spatial coordinate �. 
Across all four models, σ�� increases up to � = 0.22, after which it gradually decreases to 
zero. Among them, the RPL model shows a slower rate of decay compared to the other 
models, a behavior that is expected due to the inclusion of multiple phase lags, which 
introduce a delayed thermal response and lead to a more gradual dissipation of thermal 
energy. Additionally, the RPL model yields the highest values of σ��, followed by the LS 
model, then the SPL model, and finally the GN-II model, which exhibits the lowest stress 
values. 

Figure 6 illustrates the behavior of shear stress ��� with respect to distance �. The shear stress 

exhibits compressive behavior across all models. Notably, the RPL model demonstrates a 
significantly higher magnitude of ��� compared to the other three models. For the RPL 

model, the shear stress magnitude increases within the range 0 ≤ � ≤ 0.2, then gradually 
decreases and eventually approaches zero. In the case of the LS, SPL, and GN-II models, ���  

also remains compressive throughout, diminishing steadily to zero. 

   

      Figure 6. Distribution ��� vs. x                          Figure 7. Distribution ��� vs. x 

Figures 7 and 8 are presented to investigate the influence of magnetic field and rotation on the 
distribution of normal and shear stresses along the �-axis within the framework of the RPL 
model. The analysis is carried out for an intensity �� = 10�, using the kernel function 

�(� −  ��) =  �1 −  
�� ��

�
�

�
, at a fixed time � = 0.9. In both figures, the delay time is set as 

� = 0.1, and the material depth is taken as � = 1.0. 

Figure 7 illustrates the behavior of normal stress σ�� along the �-axis. In all scenarios, σ�� 
increases within the range 0 ≤ � ≤ 0.22, then decreases to zero, consistent with the 
mechanical boundary conditions of the problem. It is also observed that the magnitude of σ�� 
is greater when the magnetic field strength is �� =10000 compared to �� = 0for the rotating 
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medium with � = 1.0. Furthermore, for �� =10000, the stress magnitude is higher in the 
rotating case (� = 1.0) than in the non-rotating case (� = 0). 

Figure 8 shows the variation of shear stress ��� with respect to �. The stress remains 

compressive in all cases, with the highest magnitude observed for �� =10000 and  � = 1. 
The shear stress increases up to � = 0.20, then gradually decreases and reaches zero, 
satisfying the boundary conditions. The figure also demonstrates that for �� =10000, the 
shear stress profile is more pronounced in the rotating medium (� = 1.0) compared to the 
non-rotating case (� = 0.0). 

 

Figure 8. Distribution ��� vs. x 

5. Conclusion. 
This study aims to examine how rotation and magnetic fields affect the behavior of physical 
quantities in memory-dependent generalized thermoelastic wave propagation, employing the 
RPL model within a two-dimensional rotating medium. While the graphical results effectively 
highlight several distinct and non-intuitive features that emerge during wave propagation, the 
following significant observations may be additionally noted: 
1. The distributions of displacements and stresses are notably affected by the presence of a 

magnetic field in a rotating medium. Under the kernel function �(� − ��) = (1 −
����

�
)�, 

these physical quantities exhibit an increasing trend with the strength of the magnetic 
field. Additionally, it is observed that all displacement components diminish and 
ultimately vanish beyond � = 0.6. 

2. The choice of kernel function has a significant impact on the results. Specifically, the 
magnitudes of horizontal displacement � and temperature � are greater when using the 

kernel �(� − ��) = (1 −
����

�
)�  compared to the constant kernel �(� − ��) = 1. 

Furthermore, for the �(� − ��) = (1 −
����

�
)�, the vertical displacement � exhibits both 

positive and negative values, indicating oscillatory behavior. 
3. The magnetic field has no effect on the temperature distribution, as the magnetic and 

thermal fields are independent in this model. 
4. The magnitudes of the displacements � and � are greater in a rotating medium compared 

to a non-rotating one, for both kernel functions �(� − ��) = 1 and �(� − ��) = 1, (1 −
����

�
)�, in presence of magnetic field. 
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5. For kernel function �(� − ��) = (1 −
����

�
)�, the shear stress exhibits a compressive 

nature in the rotating medium, while the normal stress shows compressive behavior in the 
non-rotating medium. 
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