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Abstract: This study explores wave propagation in a rotating, two-dimensional magneto-
thermoelastic medium heated by a non-Gaussian laser pulse, using the refined multi-phase-
lag (MPL ) thermoelasticity model with memory-dependent derivatives. It encompasses Lord-
Shulman, simple phase-lag, and Green-Naghdi II theories as special cases of MPL model.
Laplace and Fourier transforms are applied to derive analytical solutions, with numerical
inversion performed by the Zakian method in Mathematica 10. Graphs illustrate the effects of
different theories, rotation, and magnetic fields on displacement, temperature, and stress.
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1. Introduction

Neumann’s uncoupled thermoelasticity theory has two major limitations: it lacks an elastic
term in the heat conduction equation and predicts infinite heat wave speed due to its parabolic
nature. To address this, Biot [1] developed the coupled thermoelasticity theory, which links
thermal and elastic effects but still retains the issue of infinite speed of heat propagation. Lord
and Shulman [2] later improved upon this by introducing a relaxation time, making the heat
conduction equation hyperbolic and ensuring finite propagation speeds for thermal and elastic
waves. Their model, part of extended thermoelasticity theory (ETE), replaces Fourier’s law
with the Maxwell-Cattaneo law. De et al. [3] applied the Lord-Shulman model to study
thermal damage in living tissues caused by hyperthermic perfusion.

Following the development of the first generalized theory, numerous researchers have
proposed additional generalized models to better interpret and match experimental
observations. Zenkour [4] proposed a unified generalized refined multi-phase-lag (RPL) heat
transport equation that incorporates and extends all the previously developed theories:
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Here K means thermal conductivity, T refers to the temperature measured above the baseline
temperature Ty, ¢, represents the specific heat capacity under constant strain, y stands for the
thermal modulus, p means the mass density. According to the applied thermoelasticity theory,
the parameter § takes value either 0 or 1. Also, 7, denotes the first relaxation time, 7, and ¢
are the phase-lags of the heat flux and of temperature gradient respectively. In the context of
the RPL theory, the value of M, N may take values of 5 or more as needed.

This theory encompasses several thermoelastic models including the coupled thermoelasticity
theory (CTE), Lord and Shulman's generalized theory (LS), Green and Naghdi type II (GN
II), the simple phase lag (SPL), and the refined phase lag (RPL) model by varying the
parameters T4, 7Tg,To and 8. The refined model has been widely applied to develop
frameworks for various physical phenomena. For instance, Mashat and Zenkour [5] studied
nanobeam vibrations, Zenkour [6] explored thermo-diffusion in cylinders, Purkait and
Kanoria [7] examined functionally graded materials under gravity, and Bhattacharya and
Kanoria [8] investigated elastothermo-diffusive effects with harmonic heat sources.

In recent years, fractional derivatives have gained significant attention across various fields
for their ability to model memory effects in physical systems. Diethelm [9] advanced the use
of the Caputo derivative [10], which employs a fixed kernel functionkg (t — &). However, this
fixed kernel limits flexibility in capturing a wide range of real-world behaviors. To overcome
this limitation, Wang and Li [11] introduced the memory-dependent derivative (MDD), which
allows the kernel function on the interval [t —7,t] to be freely chosen. This approach
enhances the model’s ability to represent time-delay and memory effects more accurately.
The kernel function k(t — &)can be chosen freely as follows:

2f e? 5
k(t—f)=1—7(t—f)+r—2(t—f)
=1 ife=f=0
=1-=£ ife=0 f=3 )
2
:<1——tf) fe=1f=1

Unlike fractional derivatives, memory dependent derivatives (MDD) offer a more intuitive
physical interpretation by directly linking the present state to past values through a freely
chosen kernel function. This flexibility makes MDD especially suitable for modeling real-
world problems in generalized thermoelasticity. Several pioneering studies have further
advanced this concept, as noted in the literature [12, 13]. Importantly, MDD reduces to the
classical derivative as T — 0, maintaining consistency with traditional models. Recently,
various problems in generalized thermoelasticity using MDD have been explored in studies
such as those cited in [14—18].

As a coupled theory, magneto-thermoelasticity integrates magnetic, thermal, and elastic

fields, where magnetic behavior is governed by Maxwell’s equations. This field has attracted
growing interest due to its wide-ranging applications in geophysics, plasma physics and
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nuclear science. Studying wave propagation in rotating magneto-thermoelastic media is
essential for accurately modeling conditions such as the Earth's rotation and magnetic field
effects on seismic behavior. Significant contributions in this area have been made by Sur et
al. [19], Mondal et al. [20,21], and Purkait et al. [15], particularly regarding the effects of
magnetic fields. Many researchers have further explored thermoelastic responses under
combined magnetic and rotational influences. Notably, Das and Kanoria [22] investigated
finite thermoelastic wave propagation in an unbounded rotating medium subjected to a
periodically varying heat source in the presence of a magnetic field.

Pulsed and ultra-short lasers, operating on nanosecond to femtosecond timescales, have
attracted considerable interest for generating thermal waves in solids due to their widespread
applications in material processing and non-destructive testing. Zenkour et al. [23, 24] and
Kutbi et al. [25] explored refined two-temperature and multi-phase-lag theories in
thermoelastic media subjected to pulsed laser heating. Additionally, De et al. [26] and Purkait
and Kanoria [27] studied the influence of magnetic fields, gravity, and inclined loading on
two-dimensional thermoelastic media using generalized and dual phase lag models.

Considering these developments, the present study investigates the impact of rotation and
magnetic fields on a two-dimensional thermoelastic medium with memory effects, using the
refined multi-phase-lag (MPL) model, which encompasses several existing theories.
Analytical expressions for displacement, stress, and temperature under pulsed laser heating
are obtained using Laplace and Fourier transforms, with numerical inversion of the double
transform carried out in MATHEMATICA 10. The Zakian method [28] is employed for the
numerical inversion of the Laplace transform. Graphical results are presented to compare the
refined model with other established thermoelastic theories.

2. Formulation of the problem

The medium under consideration is homogeneous, isotropic, and perfectly conducting, and it
is exposed to a constant magnetic field oriented along the z-axis, H = (0,0, Hy). This
medium undergoes uniform rotation with angular velocity 0 = Qn, where n is a unit vector
aligned with the axis of rotation (as illustrated in Figure 1). In the rotating frame of reference,
a fixed coordinate system is assumed within the rotating medium, the equation of motion
includes two additional terms: the centripetal acceleration Q X (Q X u), which accounts for
time-varying motion, and the Coriolis acceleration 2€) X 1.

For a two-dimensional problem, we consider u and v as the dynamic displacement
components in the x and y directions, respectively, and T as the temperature distribution.

These variables are represented as:

u=u(x,y,t), v=v(x,y,t), T=T(x,y,t)
When free charge density and displacement current are absent, the behavior of the
electromagnetic field is governed by the simplified form of Maxwell’s equations, given as:

VXxh=]+ oF 3) VXE = g 4
_]ae()at - nu()at ( )
E=—u0<a—1;><H> (5) V.R=0V.E=0 (6)
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where h = (0,0, hy) denotes induced magnetic field, €, represents electric permittivity, po
means magnetic permeability, £ is the induced electric field, E = (E, E»,0), J denotes
conduction current density and H(= H, + h) represents total magnetic field.
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Figure 1. Geometry of the problem

The stress-displacement-temperature relations are expressed as follows:

u v v ou
Gxx=(/1+2.u)a+/1——)/(T—To) ™ O-yy:(/1+zﬂ)@+l__y(T_T0) ®)

dy d0x
_ <6u N 617) 9
ny =u ay ax ( )
where A, u are the Lame’ constants, 7 is the temperature measured above the baseline
temperature Ty and y = (34 + 2p)a;, a; is the coefficient of linear thermal expansion.

L . . 1
The strain-displacement relations are given by: ey =3 (ui, it uj,i)

In the presence of Lorentz forces, the equations of motion can be written as:

(A+2u+u0H§)az—u+(A+u+u HZ)ﬂ—yaT az [——Qzu—ZQ ]
dx2 070 axay ' ax at? ot
(10)
) 0%v 0%u oT )
(/1+2u+u0H0) +(A+u+u0H0)aa —yay uaxz [W—QU-I-ZQ t]
(11
where  pgHZ (gxz + aaxal;) UoH? ( :x;y + ZTZ) are Lorentz force’s components.

Within the framework of memory dependent derivative (MDD), the heat conduction equation
in the RPL model, considering the presence of a heat source Q, is expressed as follows:

M n+1
2 n+1
Kv*T 5+T0DTO+Z( +1)|

1+

m=1

o T de
% pm (pee e +¥To 5~ p0) (12)
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Depending on the values of T, T Tos 6,M and N, Eq. (12) simplifies to the heat conduction
equation of CTE, LS theory, GN II model, SPL and RPL theory incorporating memory
dependent derivative.

For convenience, the following non-dimensional quantities are introduced:

[N A e | 1 2 ! Q pCE
(x:y ,u,v)= Cono(x,y,u,v), (L’,T)= CO”O(tIT)I O = 2. No = —(—
Como K
G!,zﬂ 2=1+2# 9'=M I = 14 Q =y2—T
Yo p A+2u’ CeCéno(A +2u) ~ Kno(A + 2p)
(13)

Removing the dashes for convenience and using the quantities stated in Eq. (13), Egs. (10-12)
reduced to the non-dimensional form as follows:

de a6 0%u v
[(B%—1)+ Ryp? ]— + Viu — ﬁz = p? Froa Q%u — ZQ— (14)
[(BZ—-1) + RHB]—y+ V2p —/32 —/32[@— Q%v + 20— ] (15)
+1
And [1+38, % D] vee = [5 + 70Dy, + Zher s ;lq“] (6+e-Q)  (16)
Also the stress components become:
ou 2 2 ov 2 2
=Za+(ﬁ —2)e—pB“0 (17) cryy=2@+(ﬂ —2)e—f£“6 (18)
_ (Ou  0v 19
Txy = <6y * 6x> (19)
_ Ou  0Ov
Also e= -+ ay (20)

Now in Eq. (16),

() g =19 = 7o = 0 and § = 1, yields the heat conduction of CTE theory based on MDD.
(I 6 =1, 74,79 = 0and 7y > 0, yields the heat conduction of L-S theory based on MDD.
(IN) 74,79 = 0, 6§ = 0 and 7, = 1, yields the heat conduction of G-N(II) theory based on
MDD.

(IV) 74y = 70,79 = 0,6 =1,N =1 and Tq = 0, yields heat conduction of SPL based on
MDD.

(V) 1= 19>79 20,6 =1and N = 1, yields the heat conduction of RPL based on MDD.

To neglect the effects of centrifugal stiffening, a low speed assumption is adopted in the
subsequent analysis. Now from Eq. (14) and Eq. (15) we get

1+ Ry)V? i 0? V26 + 20 % 21
I+ RV — o5 + Q% e =V20 + 200 21
92
2(——0Q? =—20 29 — 22

oo - -

where 2 = (M;l—z”) , V2= :xz + —— is Laplace’s operator in two-dimensional space.
au v

Also, =% ox (23)
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The laser-induced heat input is mathematically represented as follows [29]

loyy1 (—% —V1x)

r t 24
e f® 24)
where I, means laser intensity, r represents beam radius and y; characterizes the depth at

which the laser energy is absorbed.

The definition of temporal profile f(t) is as follows:
t

t -t
fO) = (25)
0
where t, denotes the time interval over which the laser pulse is applied.
The initial conditions are: u=u=v=v=0=0=0
The boundary condition on x = Oare given by
0xx(0,7,8) = 0,(0,,6) = 0; 6(0,y,t) = H(r — |yDe™"* (26)

3. Method of solution
Applying Laplace transformation defined as

FGoy,s) = LIf (3, 0] = f f(,y, et dt, Re(s)>0 @7

0
to the memory-dependent derivative operator D;"* and using the convolution theorem, we get,
t

LleoDPfO1 = £| [ K= Ofm©)d| =" 6u(s,m)LG@)  @29)
t—7o
Depending on the choice of the kernel functionK (t — &), in Eq. (2) of the introduction, we
obtain the following
2(e*—f )

ws w 52

2f

w(s)—l—& g2 —e‘ws[(1—2f+e)

The Fourier transformation with respect to y deﬁned by

fa&s) = F[f(y. )] = f Fooy,s)e ¥ dy, i=+=1

On taking Laplace and Fourier double transformatlon Egs. (16), (21) and (22) reduce to

(a11D* — a2)9 —azé = asQoe hx (29)
(asD? — a6)e — (D —a)0—agl =0 (30)
(D* - a9)( — a0 =0 (31)
2¢2
_4a _ lyy1 Lk
whereD = o Qo = (st and
2 7 gm-1 g n
=¢ (1+2m1 : Go)— (6+Go + It s Gos )s.
n N n
Tq n Iq n
az = 6+Gw+2(n+1)!6ws SE, ag = — 6+Gw+2(n+1)!6ws ,
n= n=
as = 1+ Ry, ag = &2(1+ Ry) +s%2—02, a, = &2, ag = 2Qs,
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m—1
Tg _
Sm 1Ga)

M
a9=€2+ ﬁZ(SZ_ QZ), a10:—29ﬁ25, a;q = 1+Z —
m=1

The transformed temperature 0 satisfies the following sixth-order ordinary differential
equation by eliminating & and { between Egs. (29) - (31):
(D® — AD*+ BD* - ()6 = [asasyt — (asasas + asae)yi + (asasaq —

a4aga419)]Qpe ¥ (32)

asaiy

where
4 ayas + asaqg + ag + as

)

AsAqy
_ (20A509 + ajag + agag — agaq,g + azaqg + asa,

)
asajy
c 0609 — Q308019 + A3A709

sy
By solving Eq. (32) under the condition that & — o0 as x — o ,we get,

Dy

3
- Z R e ~Ki% + Ly Qpe N (33)
=1

Where k;’s (j = 1,2,3) are the roots with positive real part of the characteristic equation
corresponding to Eq. (32), R;’s (j = 1,2,3) represents the arbitrary constants,
L= 4051 —(A4a509+a406)VE +(a40609— A405010)

asai1p

Substituting Eq. (33) in Eq. (29) we obtain
3

and p=yf— Ay} +By?-C

é= Z RjHlj e kX 4 L,Qqe "V1* (34)
j=1
and again applying Eq. (34) in Eq. (31) we derive,
3
E=ZRjH2je_ij+L3Qoe_y1x (35)
j=1
a1k?-a, a11(a11k12'—a2) aliyi-Liaz—a
WhereH1j=+,H2j= ,L2= 1 z 4,L3=
as a3(k]2-—a9) as

a10(‘111L1V12 —Llaz—a4)
as (Y12—a9)

Then using the result of Eq. (34) in Eq. (20) we obtain,
3

U= 2 RiHjj e ~KjX 4+ L,Qoe V¥ (36)
j=1
and substituting Eq. (36) in Eq. (23) we derive,
3
V= z RiH,je ~KjX 4+ LcQpe TV1¥ (37)
j=1
_ —kjHqj—iEH, kiH,+iEH, Ly +ikL _ Lgyy+iéL
WhereH;; = ]ka-J—fz L Hy; ]k]é—§2 L, L, = —W, 4= W
Upon substituting &, 6, and 7, into Egs. (17) - (19) we get
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gxx = RjH5] + L6Qoe VX (38)
j=1
3
Gy = Z RiHgj e ™% + L,Qge 1% (39)
Oxy = Z RiH;j e M + LgQe ~11* (40)
j=1
Where H5] = —ZkJH3J + (ﬁz - 2)H1] - ﬂz, L6 = —2L4_y1 + (ﬁz - 2)L2 - ﬁle

H6] = (ﬂz - 2)1'111‘ - 2i5H4j —ﬂza L, = (ﬂz —2)L, — 2i¢Ls —ﬁzlq
H7; = —kjHy; — i§H3j, Lg = —y1Ls — i§Ly
Applying the boundary conditions specified in Eq. (26), Egs. (33), (38), and (40) are modified

as follows:
2 sin(qr)
R; L VMY = | —— 41
Z Je "+ L1Qoe \/;q(s+b) (41)
3
Z R;Hs; e 5% + LgQge 1% = 0 (42)
Z RiH, ;e % + LgQge 1% = 0 (43)

The unknown parametersR;’s (j = 1,2,3) can be obtained by solving Egs. (41) - (43).

4. Validity of the Model

To validate the derived equations and results, a comparison is made with the existing study
conducted by Othman and Mondal [30]. Their work explores the influence of memory-
dependent derivatives in a two-dimensional rotating medium in the context of the Lord—
Shulman generalized thermoelasticity theory. Accordingly, in this present problem, when the
magnetic field is neglected, the governing equations reduce to those obtained by Othman and
Mondal [30] under the specific conditions § = 1,74 = 79 = 0,Q = 0. This equivalence can
be established analytically as follows.

By imposing Ry = 0, the dimensionless form of the equations of motion is derived from Egs.
(14) and (15), which then simplify to:

(ﬂ —1)—+ VZu —ﬂz [—— Qzu—ZQa ] (44)
ot? ot

(B2 - 1)@+ V2p — 2 69 = p2 [atz — Qv+ zna] (45)

The stress components derived in this study closely resemble those reported by Othman and
Mondal [30].
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The heat conduction equation can be obtained from Egs. (16) by setting § = 0,7, = 79 =
0,79 = 1, eliminating the heat source and neglecting the magnetic field. Under these
conditions, Eq. (16) reduces to

V20 = (1+1D,)(0 + €é) (46)
Equations (44), (45) and (46) are identical with the equations (33) and (34) respectively of
Othman and Mondal [30].

5. Numerical Result and Discussion

The expressions for displacements, stresses, and temperature distributions are obtained in the

transformed domain as f(x,¢&,s). The inverse Fourier transform is carried out numerically,
while the inverse Laplace transform is performed using the Zakian method. For numerical
analysis, magnesium has been selected as the material, following the work of Dhaliwal and
Singh [31]. All parameter values used in the calculations are expressed in SI units. The
constants employed in this study are listed as follows:

K = 1.7 x 102N/Ksec, ar = 1.78 x 107°K~1, Cp = 1.04 x 103m?/K,
u=13278x101°N/m?,  1=2.17 x 101°N/m?, I, = 10%]/m?
p=174x10%kg/m3,  w=0.1sec™!, T,= 293K
r = 0.2um, t=0.9, Y1 = 25/m, rn=1

Table 1 represents a comparison of U, 0y, and gy, for different values of M and N taking x =
05t=09e=f=1H,= 10% and Q=1 in case of RPL model. Now if M = N = 5 and
M = N = 6 accuracy up to 5th decimal places is observed from the table.

Table 1: Distribution of u, o, and o,,, for Different Values of M and N

RPL u O Ty

M=N=1 | —0.335043 | 6.06567 | —2.17428
M=N=2 | —0.339565 | 6.15785 | —2.19029
M=N=3 | —0.34152 | 6.18514 | —2.20038
M=N=4 | —0.34164 | 6.20935 | —2.20421
M=N=5 | —0.34165 | 6.29814 | —2.20442
M=N=6 | —0.34165 | 6.29814 | —2.20442

The displacement components u, v temperature T and the stress components Oy, Oxy,
distributions were evaluated on the x-axis. The computations are performed for four different
theories: RPL (6§ =1,79 =0.01,7y =7, =0.02,M=7,N=7), SPL (6§=1,179=
0.01,79 = 74 = 0.02, T§ =0, M=1), LS model (6 =1,79 =74 =0,70 =0.01, M =1)
and GN-II model (6= 0,79 =74 = 0,79 = 1).
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Figure 2-6 are plotted to show the impact of four models (RPL, SPL, LS and GN-II) on all

_£N2
physical quantities I, = 10% with respect to kernel functions k(t — &) = (1 Sk 41 jl) at a

fixed time t = 0.9when the magnetic field is present for the rotating medium (2 = 1.0). The
delay time w = 0.1 and depth y = 1.0 are considered for all the figures 2-6.

29y
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Figure 2. Distribution of u vs. x

Figure 3. Distribution of v vs. x

Figure 2 illustrates the distribution of horizontal displacement u with respect to distance x.
The results show that the displacement remains compressive across all considered models
(RPL, SPL, LS, and GN-II), with the maximum values occurring near the boundary. Among
them, the RPL model consistently exhibits the highest displacement throughout the domain.
Furthermore, for x < 0.23, the displacement magnitude follows the order: LS > SPL > GN-IL
However, beyond x = 0.23, this order changes to SPL > GN-II > LS, while still maintaining
compressive behavior. Ultimately, the displacement magnitude diminishes to zero for all

models.

-0.1 -
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20
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Figure 4. Distribution of 7 vs. x

Figure 5. Distribution of o, vs. x

Figure 3 shows the behavior of vertical displacement v with respect to distance x. For both
the RPL and LS models, the displacement v attains its peak at x = 0 and gradually decreases
to zero. In the RPL model, v remains positive within the range 0 < x < 0.16 and becomes
negative for 0.16 < x < 0.30. In contrast, for the LS model, v stays positive up to x = 0.6.
Meanwhile, the SPL and GN-II models exhibit compressive vertical displacement (negative
values) in the range x = 0 to x = 0.3, after which the displacement vanishes.
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Figure 4 depicts the temperature distribution T as a function of distance x. In all cases, the
temperature reaches its maximum at x = 0, corresponding to the location of thermal shock
application, and subsequently decreases with increasing distance. The RPL model exhibits the
highest temperature values up to x = 0.6, beyond which the temperature profiles for the RPL,
SPL, and LS models converge and diminish, approaching zero near x = 0.8. In contrast, the
GN-II model displays a more rapid temperature decay, with the profile vanishing shortly after
x = 0.6.

Figure 5 represents the behavior of normal stress oy, with respect to spatial coordinate x.
Across all four models, oy, increases up to x = 0.22, after which it gradually decreases to
zero. Among them, the RPL model shows a slower rate of decay compared to the other
models, a behavior that is expected due to the inclusion of multiple phase lags, which
introduce a delayed thermal response and lead to a more gradual dissipation of thermal
energy. Additionally, the RPL model yields the highest values of oy, followed by the LS
model, then the SPL model, and finally the GN-II model, which exhibits the lowest stress
values.

Figure 6 illustrates the behavior of shear stress oy, with respect to distance x. The shear stress
exhibits compressive behavior across all models. Notably, the RPL model demonstrates a
significantly higher magnitude of o, compared to the other three models. For the RPL
model, the shear stress magnitude increases within the range 0 < x < 0.2, then gradually
decreases and eventually approaches zero. In the case of the LS, SPL, and GN-II models, ay,,

also remains compressive throughout, diminishing steadily to zero.

JXX

60 e==t==H0=10000, Q=1
50
40

=== H0=0, Q=1

H0=10000, Q=0

30
20
10
or——+ = A x
0 0.5 1 1.5 2 2.5
Figure 6. Distribution g, vs. x Figure 7. Distribution o, vs. x

Figures 7 and 8 are presented to investigate the influence of magnetic field and rotation on the
distribution of normal and shear stresses along the x-axis within the framework of the RPL
model. The analysis is carried out for an intensity I, = 102, using the kernel function

N2
k(t— &)= (1 - ﬁ) , at a fixed time t = 0.9. In both figures, the delay time is set as

w
w = 0.1, and the material depth is taken as y = 1.0.

Figure 7 illustrates the behavior of normal stress oy, along the x-axis. In all scenarios, oxy
increases within the range 0 < x < 0.22, then decreases to zero, consistent with the
mechanical boundary conditions of the problem. It is also observed that the magnitude of oyy
is greater when the magnetic field strength is H, =10000 compared to H, = Ofor the rotating
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medium with 2 = 1.0. Furthermore, for Hy, =10000, the stress magnitude is higher in the
rotating case ({2 = 1.0) than in the non-rotating case ({2 = 0).

Figure 8 shows the variation of shear stress gy, with respect to x. The stress remains
compressive in all cases, with the highest magnitude observed for Hy =10000 and 2 = 1.
The shear stress increases up to x = 0.20, then gradually decreases and reaches zero,
satisfying the boundary conditions. The figure also demonstrates that for Hy, =10000, the
shear stress profile is more pronounced in the rotating medium (2 = 1.0) compared to the
non-rotating case (2 = 0.0).

i T X
1 15 2 2.5

e=t==H0=10000, Q=1

e=fl==H0=0, Q=1

H0=10000, Q=0

Figure 8. Distribution o,,, vs. x

5. Conclusion.

This study aims to examine how rotation and magnetic fields affect the behavior of physical

quantities in memory-dependent generalized thermoelastic wave propagation, employing the

RPL model within a two-dimensional rotating medium. While the graphical results effectively

highlight several distinct and non-intuitive features that emerge during wave propagation, the

following significant observations may be additionally noted:

1. The distributions of displacements and stresses are notably affected by the presence of a
magnetic field in a rotating medium. Under the kernel function K(t — &;) = (1 — t;i)z,
these physical quantities exhibit an increasing trend with the strength of the magnetic
field. Additionally, it is observed that all displacement components diminish and
ultimately vanish beyond x = 0.6.

2. The choice of kernel function has a significant impact on the results. Specifically, the
magnitudes of horizontal displacement u and temperature T are greater when using the

kernel K(t—¢&;)=(1- %)2 compared to the constant kernel K(t—&;)=1.
Furthermore, for the K(t —&;) = (1 — =4

w
positive and negative values, indicating oscillatory behavior.

3. The magnetic field has no effect on the temperature distribution, as the magnetic and
thermal fields are independent in this model.

4. The magnitudes of the displacements u and v are greater in a rotating medium compared
to a non-rotating one, for both kernel functions K(t —&;)=1and K(t —§&,)=1,(1 —
=&

w

)2, the vertical displacement v exhibits both

)2, in presence of magnetic field.
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5. For kernel function K(t — &) =(1 —%)2, the shear stress exhibits a compressive

nature in the rotating medium, while the normal stress shows compressive behavior in the
non-rotating medium.
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