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Abstract— Energy is one of the most dominant 

requirements in a global scale. Today’s global energy 

demand is significantly fulfilled by the fossil fuels such as 

coal and oil. The fossil fuel has restricted supply in the 

future and also plays the vital cause in the global warming. 

These restrictions direct the scientist and researchers to 

explore the sustainable and eco-friendly energy resources 

available in the world. Among the various energy resources, 

the energy from ocean attracts the researchers today. 

Thousands of wave energy converters (WECs) are 

developed and patented to harvest the wave energy. 

Particularly, a country like India, has a long coastal region 

contained an immense potential in the ocean energy 

resources. But the intensity of the energy in the Indian seas 

is less when compared to the Pacific and other regions in 

the world. The low energy intensity level combined with 

economic factors, leads to a barrier for funding agencies to 

provide funding in the ocean energy research. The 

efficiency is much increased when a suitable control is 

incorporated in the energy converter. To attain this an 

effective control technique this paper presented a technique 

known as the reactive integrated with the ANN control is 

implemented. The developed ANN is compared with the 

results of the statistical method such as linear regression 

analysis. The energy harvesting efficiency is increased by 

achieving resonance by adopting reactive control when the 

non-buoyant type WEC is subject to both the regular and 

irregular waves. When compared to other devices where 

the average energy conversion efficiency is found to be 

between 20%-40%, the proposed energy converter has a 

significant energy harvesting efficiency of about 

58%.Keywords— Wave Energy Converter (WEC), 

Artificial Neural Networks (ANNs), reactive control, 

Multistart optimization.  

Keywords— Wave Energy Converter (WEC), Artificial 

Neural Networks 13 (ANNs), reactive control, Multistart 

optimization. 

I. INTRODUCTION  

Energy is one of the most dominant requirements in the 

global scale. Today’s global energy demand is 

significantly fulfilled by the fossil fuels such as coal and 

oil [1]. The fossil fuel, have restricted supply in the future 

and play the vital cause in the global warming. Further, 

every year abundant amount of carbon dioxide is released 

to the environment which contributes to the greenhouse 

effect [2]. Among the renewable energy sources, the 

ocean energy plays a vast contribution. Since nearly 70% 

of the earth is covered with ocean, there is an ample 

opportunity to extract the energy from it. Ocean energy 

is available in two forms, one is thermal energy due to 

the heating of the earth’s surface by the sun and the deep 

cold water [3]. This temperature difference is utilized to 

run the thermodynamic cycle to produce power. The 

other form of energy is mechanical energy which is 

available in the form of tides, waves and ocean current. 

The waves are formed from the wind, which is blown due 

to the rotation of earth and uneven heating of the earth’s 

surface by the sun. The tides and currents are formed due 

to the gravitational pull between the moon and the earth. 

Suitable mechanisms are instigated in order to extract the 

energy from these resources [4]. Effective utilization and 

sustainability of any ocean energy harvester depend upon 

its adaptability in the irregular seasonal environment, 

situation capability in maximum energy extraction and 

finally fulfilling the economic barriers. Thousands of 

patterns have been reported to harvest the energy from 

ocean and among those technologies, the Wave Energy 

Converters (WEC) plays the predominant role in 

electricity generation from the ocean waves [5]. 

Generally wind is the flow of large amounts of air from 

high pressure to the low pressure area as shown in figure 

1. The formation of wind begins with the sun’s radiation. 

The earth’s surface heated differently because of the 

presence of clouds, mountains, valleys and water bodies, 

etc. The air in the high heated area gets rise and creates 

low pressure whereas, the area which is low heated 

creates high pressure [6]. Hence, the air flows from high 

pressure area to the low pressure area which causes the 

wind formation. The ocean waves are formed when this 

wind flow strikes the ocean surface and the waves which 

are produced can travel for a large distance before 

reaching the land. Wind waves vary in size from small 

ripples and to the maximum of over 100 ft (30 m) high. 

The development of ocean wave happens due to the 
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variation in the shear stress and the fluctuations of the 

turbulent air flow on the water surface [7]. 

 
 

Fig 1: Flow of Ocean Wave 
 

The ocean wave system subjected to vast range of 

challenges since the ocean wave energy is highly 

nonlinear, the power output from the wave energy 

converter is highly fluctuating [8]. In offshore locations, 

wave direction is highly inconstant, and thus wave 

energy converters have to align themselves with the help 

of moorings, or be symmetrical, in order to capture the 

energy of the wave [9]. The fabrication and installation 

cost of the wave energy converter is higher when 

compared to any other renewable energy devices. The 

ocean environment is highly complicated to any wave 

energy converters due to the corrosive nature of the 

ocean and the marine growth [10]. The common 

classification based on operating principle is dividing the 

wave energy converters into Oscillating Water Column 

(OWC), Over topping Devices (OTD) and Wave 

Activated Bodies (WAB), based on the way they work. 

It is clear that a robust wave harvester is in great demand 

which suits to the Indian coastline to fulfill the energy 

demand of the country [11]. Considering this, a novel 

concept to harvest the energy from the ocean waves was 

proposed and fabricated in a small. The electricity from 

this energy converter is successfully generated in the lab 

environment with the help of the small wave flume and 

the results are published previously [12].  

This paper concentrated on the construction of the ANN-

based non-buoyant structure for ocean wave energy 

harvesting. The emulator is designed with an oscillator to 

withstand the non-uniform pecan wave. The developed 

structure is mathematically examined for performance in 

terms of both simulation and hardware scenarios. Finally, 

the developed model is implemented in the ANN 

network for the computation of the performance of the 

designed emulator. The paper structure comprises of the 

related works in section 2. The structural design and 

mathematical formulation are presented in section 3. The 

simulation results and analysis are presented in section 4 

and the overall conclusion of the designed structure is 

presented in section 5. 

II. RELATED WORKS 

In [13] proposed an onshore WEC is known as Searaser 

which harnesses the almost constant power. It is simple 

in structure which requires less installation and 

maintenance cost and power fluctuation is minimized. 

The Searaser itself does not generate electricity, but 

hoists the water (increasing its potential energy) by an 

amalgamation of buoyancy and gravity forces. The 

power generation takes place above the water, on the 

shore and hence the corrosion is minimized. Seasun 

power system provides high stability and simple 

structure to mount the WEC on the sea bed. Submerged 

plate [14] is moored but not rigidly fixed. It is prevented 

from sea bed earthquakes and is efficient in damping. 

The stability of the WEC is a very important criteria to 

be considered in the design stage. Spar has high structural 

stability and capable of preventing the energy conversion 

devices from ocean environment. It also prevents the 

wave energy harvester from displacement during buoy 

movement. 

ANNs are used in various renewable energy sectors such 

as solar, wind and ocean. In these sectors, ANN is 

implemented to predict the wind speed and direction, air 

humidity and temperature and solar radiations. For 

example, various neural network models are proposed to 

predict the wind speed in [15]. The best suited network 

model with minimum error is obtained among the models 

tested such as Multilayer Perceptron (MLP), multilayer 

adaptive linear neuron (Madaline), Back Propagation 

Neural Network (BPN), and Probabilistic Neural 

Network (PNN). Generally, the selection of a neuron is 

made randomly but, in above mentioned work, to select 

the optimal hidden neurons for the proposed network 

model nearly 102 criteria are trained and validated. The 

protocol for finding for optimal hidden neuron is also 

presented. 

In [16] developed a neural network model for predicting 

the output of a wind power plant. The PNN model was 

implemented for preprocessing the data which are to be 

utilized for training. Then few selected turbine data’s 

were identified as input source for the model. Finally, 

complex valued Recurrent Neural Network (CRNN) 

model is found with high accuracy. Apart from 

prediction of wind speed and the power output from the 

wind power plant, the other parameters such as wind 

direction, fluctuations, season of a particular area, wind 

turbine positions are crucial for effective power 

production. An ANN model with feed forward neural 

network architecture and back propagation algorithm for 

effective prediction. 

In [17] proposed four neural networks, namely, 

multilayered perceptron, recurrent, radial basis function 

and bagged network for solar power generation 

forecasting ahead of 24 hour for a 24kW photovoltaic 

system. ANN also has a wide application in the field of 

ocean research, such as tsunami prediction [18]. The 

ANN is evaluated for their performance in the prediction 

of water level during the tsunami. This is achieved by 

training the ANN with different tsunami conditions. 

ANN was designed and developed in [19] for the 

prediction of wave parameters such as the wave height 

and period. The findings were compared with the results 

of the Young’s model and this has proved the suitability 
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of ANN for the prediction of short term wave parameters. 

ANN also has its application in the control of WECs. An 

algorithm was developed in [20] for the reactive control 

of the point absorbers. The ANN predicts the wave 

height, wave period and power takeoff damping and 

hence the developed ANN is found to be effective in 

maximizing the energy absorption. A combination of 

numerical and neural network model was proposed in 

[21] to predict the ocean wave. The numerical model 

resembles the physical concept and ANN is incorporated 

to improve the performance of the model. The results are 

best for short-term wave prediction and the ANN is 

suitable for simplifying the complex phenomenon as well 

as predicting the accurate wave parameters. 

In this work the ANN is implemented for the efficiency 

enhancement of the WEC, this is achieved by predicting 

the displacement of the non-buoyant body for the 

corresponding incoming wave and tuning the electrical 

load accordingly to obtain the optimal damping and 

achieving the maximum energy extraction 

III. OSCILLATING ARM IN THE EMULATOR 

The concept of the proposed model can be understood in 

the Figure 2. The setup is essentially comprised of the 

suspended arm with the steel oscillating frame with the 

non-buoyant body suspended in the metal rope between 

one another end with the counterweight. Additionally, 

the pivots arm are oscillating based on the center coupled 

with the shift rotatable pivoted table. The shaft rotatable 

comprises the gearbox that is unidirectional, a step-up 

gearbox and a generator. 

 

 Non-linear Auto Regressive network with Exogenous 

inputs (NARX). NARX is a highly sophisticated 

technique which is an advanced version of time series 

based neural networks. NARX is a multilayered network 

model with a feedback network (Figure 4.1). This highly 

sophisticated model is used to learn and predict the 

behavior of complex nonlinear systems. This technique 

is used to model the nonlinear relationship among the 

variables with respect to time. In this model, the target 

variable does not depend only on the past value of 

variables, but also it depends on the past values of the 

target value itself. Multi layered structure and parallel 

processing ability makes NARX a suitable model for 

learning from a large number of non-linear data even in 

the presence of noise. As mentioned earlier the target 

values of NARX model depends on the past value of both 

input data and target variables. The target value „y‟ at 

any specific time „t‟ can be predicted from input value 

„x‟ and target value „y‟ for „n‟ historic period until time 

„t‟ as shown in Equation (1) 

 

y(t)=f{y(t-1)…….y(t-n),x(t),x(t-1)….x(t-n)}                           

(1) 

 

The model of the ANN architecture comprises of a 

different number of layers where each layer contains 

neurons. Generally, based on the input and output 

parameters the neurons in the input and output are 

considered. Similarly, this work comprises of the 

parameters as height of the wave in cm (Wh) and wave 

time period (Wt) and hence the neurons count in the input 

is identified as the two. 

 
 

Fig 2: Experimental Setup 

 

The simulation setup for the defined NARX model is 

tabulated as follows in table 1. 

 

Table 1: Experimental Setup 

Structural 

Parameters 

Network 

Parameters 

Network Non-linear auto 

regressive network with 

exogenous inputs 

(NARX) 

Transfer function Sigmoid transfer 

function 

Learning Algorithm Levenberg - Marquardt 

algorithm 

Error function Mean Square Error 

(MSE) 

 

 The output parameter involved in the estimation 

of the heave displacement with the non-buoyant 

container in cm (Jc) for the neuron in the input layer as 

one. To estimate the performance characteristics of the 

developed model ith data in the oceanic wave is denoted 

as ei with the ANN actual output of ai.  

 

3.1 Mathematical Formulation 

With the coupled generator motor mathematical model is 

developed and connected to the generator. As with the 

motor the output is defined as the Kirchoff‟s voltage law 

and rotational equation as, 

 

�� = (�� + ��)+����ƒ   

 (2) 

 

Here, ��Is the motor armature voltage, ����ƒIs the 

backemf of the motor, 	� Is the motor armature current, 

�� Is the armature resistance of the motor and �� Is the 

armature inductance of the motor. Similarly, the 

governing equation for the generator is defined in 

equation (3) 

 

�g = 	g(�� + �g + �g)   

 (3) 
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The equation for the generator is similar to that of the 

motor in which parameters are indicated with subscript 

g, except �which is known as an induced emf of the 

generator and ��Is the resistive load. Now, the torque of 

the motor can be derived as in equation (4), 

 


� = ����ƒ	�    

 (4) 

 

Here, 
� is the mechanical power of the motor. The 

mechanical power 
� is related to the electromagnetic 

torque ����, represented in equation (5) 

 


� = ��    

 (5) 

is an angular speed in rad/sec 

Now, equating equations (4) and (5) equation (6) is 

obtained 

 

����ƒ	� = ��   

 (6) 

 

Further, it can be simplified as in equation (7) 

 

�� = ��	�    

 (7) 

 

Here, the torque constant and voltage constant is 

considered to be equal and denoted as motor constant 

��. Similarly for the generator, the corresponding 

torque equation and induced   emf is represented in 

equation (8) and (9), 

 

�g = �g	g    (8) 

and 

�g = �g    (9) 

 

Let‟s consider the resistive lamp as the load connected to 

a DC generator output terminals. At steady state 

conditions, equation (9) can be rewritten as in equation 

(10), 

 

�g = 	g(��)    (10) 

 

Using equations (9) and (10) the current flowing through 

the load can be obtained as in equation (11), 

 

�g = 	g(��)    (11) 

Now, the power intake of the resistance load 
�Is given 

as in equation (12), 

 

PL=kg2ω2/Rl         (12)                                                                                                 

 

Where, Kg2 is the generator constant and the above 

equation gives the relation between the resistance values 

of the system to that of the system angular speed and 

further, the optimal resistive load can be obtained from 

the corresponding angular speed of the system. 

IV. SIMULATION ANALYSIS 

The simulation model is developed from the Matlab 

SimPower Systems library. As shown in Figure 3, the 

simulation system contains of PMDC motor and PMDC 

generator which are coupled together. Further, it also 

consists of MOSFET Switch, DC source, Resistor in 

RCL block, capacitor in RCL block, PID Controller, 

Repeat sequence, Gain, PWM generator, power gui, Bus 

selector, Scope, Display, Manual Switch, Voltage 

measurement, Current measurement, Product, 2nd order 

filter. After connecting the components the parameters 

are to be tuned for obtaining the similar results of the 

hardware setup. The parameters are given in Table 2. 

 

 
 

Fig 3: Parameters of DC motor-generator couple 

 

Table 2: Hardware Measurement 

The simulation motor speed is achieved same as that of 

the real motor by providing an appropriate power to the 

drive motor. The input voltage, the input current and the 

corresponding duty cycle are shown in the Figures 4,5 

and 6 respectively. These parameters are tuned in such a 

way so that the simulation speed is made to match with 

the real motor. 

 

 
Fig 4: Input voltage to the motor drive 

 
Fig 5: Input current to the motor drive 
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Fig 6: PWM to the motor drive 

 

The simulated motor mimics the rotation of the real 

motor by providing appropriate pulse width modulation 

and it also considers the mechanical losses occurred in 

the real hardware setup. In the simulator the speed of the 

generator is maintained constant as shown in the Figure 

7 such that the quality of the power generated is high. 

The Figures 8,9 and 10 respectively show the voltage, 

current and power which varies according to the variation 

in the load. The load is adjusted to maintain the generator 

speed constant to maintain the quality of the energy 

production. 

 
Fig 7: Generator speed (rpm) 

 

 
Fig 8: Generator Voltage (Vs) Time 

 

 
Fig 9:  Generator current (Vs) Time 

 
Fig 10: Generator power (Vs) Time 

 

Simulation is carried out where the simulated motor 

receives the appropriate drive signal as pulsated width 

modulation by including the mechanical losses occurred 

in the real WEC. Further, it drives the motor, in turn the 

motor is coupled to the generator for power production. 

In order to maintain the quality of power production the 

speed of the generator shaft has to be maintained constant 

and this is achieved by providing the optimal load to the 

generator. 

V. FINDINGS  

Reactive control of the energy converter is performed for 

the regular waves in the emulator. As explained in the 

previous chapter, the emulator has the ability to produce 

the same static and dynamic characteristics of a real 

WEC. Any range of waves can be fed to this emulator, 

and the system converts the wave profile into a 

corresponding duty cycle which vary between 0% to 

100%. The data (wave profile) can be uploaded in the 

form of Microsoft excel format. As soon as the data is 

uploaded, the peak value of all the amplitudes of the 

wave profile is considered and the corresponding duty 

cycle is generated.  

This generated duty cycle is fed to the motor. The control 

of the emulator for the given wave profile can be done in 

two modes, one is the auto mode and the other is in 

manual mode. The auto mode is in the form of closed 

loop system and the manual mode is in the form of open 

loop system. In the closed loop system, the parameters 

such as the sample rate, duty gain are kept constant and 

the motor rotates as per the duty cycle which is further 

coupled to the generator. The generator has to be rotated 

at constant speed and optimal load for quality power 

production. Finding out the constant speed and optimal 

load is possible in the emulator. This can be achieved by 

varying the ranges of the generator set speed and 

providing the corresponding optimal load. Comparing 

the results, the optimal set speed and the load damping to 

the generator can be identified. In the manual mode the 

parameters such as the sample rate, duty gain can be 

adjusted as per the requirement and this is done to modify 

the wave data’s which are not responding during the auto 

mode or for testing the wave profile for a different range 

of parameters. The emulator is subjected to different 

regular waves and the reactive control for all the 

conditions is achieved. The emulator is subjected to two 

conditions, one is the regular wave which has the fixed 

time period and amplitude and the other one is the 

irregular wave which varies in the time period and 

amplitude. Initially, during the regular wave conditions, 

the regular wave data is fed to the emulator and the 

corresponding optimal electrical load is provided by the 
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technique reactive loading control to enhance the 

generator power production. During irregular wave 

condition, the Artificial Neural Network (ANN) is 

developed and implemented to predict the optimal 

electrical loading control. 

VI. CONCLUSION  

This work particularly contributes to the efficiency 
enhancement of non-buoyant WEC achieved through 
employing reactive control technique. The control system 
was developed by considering the practical challenge 
encountered during implementing the WEC in the real 
ocean environment. The nature of the sea environment 
plays the major role in affecting the mechanism and the 
control system of WEC and thus considering this issue, 
the WEC is developed in such a way that only the non-
buoyant container is made to be in contact with the wave 
and the remaining parts are outside the incident wave, 
similarly the propose control system is only about tuning 
the load condition of the WEC based on the incident wave 
and thus there is no much complexity in the control 
system and this favours towards simplest form of 
mechanism in terms of complexity and cost. Despite, the 
waves being highly irregular in nature, the continuous 
power generation is possible when the WEC is subject to 
active control of the dynamics. The controlling means in 
terms of both the amplitude and phase matching which 
leads to the optimal energy extraction. This active tuning 
of the dynamics of the system leads to the resonance 
where the natural frequency of the device close to the 
frequency of the incident wave. The level of tuning the 
WEC can vary from tunning the dynamics of the system 
to a particular sea state to wave – by-wave adoption. It is 
convenient to tune the dynamics of WEC in regular wave, 
but it is intricate in nature to tune the dynamics of the 
WEC according to the incident wave when the wave is 
irregular. Thus, ANN paves the way for optimal energy 
extraction. The network used to develop the ANN model 
and other related parameters plays a dominant role in the 
performance. A multi layered time series based neural 
networks NARX is highly sophisticated model to learn 
and predict the behavior of complex nonlinear systems. 
Multi layered structure and parallel processing ability 
makes NARX a suitable model for learning from a large 
number of non-linear data even in the presence of noise. 
In ANN apart from the input and output layer, the hidden 
layer plays a vital role in the prediction accuracy. In this 
work, network with one and two hidden layers is 
producing promising results with good accuracy and 
increasing the hidden layer more than two leads to 
complexity in network and long execution time. 
Similarly, the number of neurons in the network also 
plays a dominant role and hence a range of neurons 
varying from two to thirty is implemented and tested. The 
MSE and correlation co-efficient are the two factors based 
on which the performance of the network is evaluated. 
Among the proposed network the ANN with architecture 
2-10-10-1 is performing well with least MSE. This 
network is most suitable for prediction for the irregular 
wave conditions. Further, when ANN is compared with 
the statistical method such as linear regression analysis, 
the results of the latter is inappropriate due to the possible 
occurrence of multicollinearity. Hence ANN is 
considered as a suitable technique for the proposed work. 
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