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Abstract: Exchange interactions in spin systems can bring about quantum entanglement in the ground and 
thermal states of the systems, which has been proved to be a resource for Quantum Information and 
Computation protocols. In this paper, we consider a spin tetramer, with spins of magnitude 1/2, in which the 
spins interact via nearest neighbour, and diagonal interactions J1, and J2 respectively. This kind of geometry 
is responsible for a phenomenon called frustration in a physical system. The ground and thermal state 
entanglement properties of the tetramer are calculated analytically. Both bipartite and multipartite 
entanglements are studied and a signature of quantum phase transition, which can also termed as 
‘entanglement transition”, is detected.
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1. INTRODUCTION
Entanglement is a rudimentary property of quantum mechanical systems and 

gives rise to correlations in a physical system, which cannot be expected from 
classical considerations [1]. A pure state is said to be entangled if it cannot be 
written as a product of individual wave functions. For example, the singlet state of 
two spin- 1/2 particles, 1/2 ( | ↑↓ 〉 -| ↓↑ 〉 ) , which cannot be written as a product of 
the spin states of individual spins. In the case of a mixed state, inseparability occurs 
if the density matrix is not a convex sum of product states. Entanglement plays an 
crucial role in applications related to quantum information and communication. 
Candidate systems for practical implementation of the said protocols include 
quantum spin systems in which exchange interactions are found to be responsible 
for entanglement [2].

Entanglement in a physical system can be classified as two types, bipartite and 
multipartite.. Bipartite (multipartite) entanglement involves two (more than two) 
subsystems. A number of appropriate quantification measures are available for 
bipartite entanglement, for both pure and mixed states of a composite system. The 
entanglement between a pair of spins, belonging to a chain of interacting spins, 
provides an example of bipartite entanglement. Bipartite and to a lesser extent 
multipartite entanglement properties of a variety of spin models have been studied 
so far at both zero and finite temperatures and including a tuning parameter like an 
external magnetic field or exchange inhomogeneity or anisotropy [3,4]. An issue of 
considerable interest is whether entanglement, a feature of pure quantum origin, 
develops special features in the vicinity of a quantum phase transition (QPT). A 
QPT occurs at T=0 and is brought about by tuning some system parameter, say, the 
exchange interaction strength or an external variable like the magnetic field to a 
critical value [5]. Some recent studies have explored the relation between 
entanglement and QPT in a variety of spin models and the main conclusion is that 
certain entanglement-related quantities exhibit features like scaling and singularity 
in the vicinity of a quantum critical point (QCP) [6]. In the case of first-order QPTs, 
the ground state concurrences may change discontinuously at the transition point 
[7]. A recent work on the ground state level crossings has coined the term 
‘entanglement transitions’ where the transition from one state with a specific 
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entanglement structure to another state  with a different entanglement structure 
happens [8].

Studies on finite quantum spin systems acquire significant relevance in the 
context of molecular or nano-magnets. In such magnetic systems, the dominant 
exchange interactions are often confined to small spin clusters. The intercluster 
exchange interactions are much weaker in comparison so that the compounds can be 
assumed to consist of independent spin clusters. A recent study provides a number 
of examples of molecular magnets the thermodynamic and neutron scattering 
properties of which can be well described by small spin clusters like dimers, trimers 
and tetramers [9]. 

In this paper, we consider a spin cluster system of four (tetramer) spins in which 
pairwise entanglement between individual spins does not exhaust the total 
entanglement. The ground state and thermal entanglement properties of the 
tetramers are determined analytically. The system exhibits a QPT at special values 
of the exchange interaction strengths. This transition point can also be termed as the 
so-called  ‘entanglement transition’ because the system exhibits very different 
entanglement structures and properties at the two sides of the said transition point 
[10]. The magnetic properties of the polyoxovanadate compound, ( NHEt ) 3 [ V 8 
IV V 4 V A s 8 O 40 ( H 2 O ) ] . H 2 O (designated as V12 ) are well explained by 
spin–1/2 AFM tetramers, with only nearest-neighbour (n.n.) interactions, and 
described by the isotropic Heisenberg exchange interaction Hamiltonian [9]. Also, 
this kind of model Hamiltonians for spin systems can be realized in ultra-cold 
atomic systems in optical lattices [11].

                

(a)                                         
(b)

Figure 1: Tetramer with n.n. and diagonal interactions and Resonating Valence 
Bond (ψ RVB1 and ψ RVB2) states  of the 4-spin plaquette..

2. Entanglement properties of S= ½ AFM tetramer
We consider a tetramer of spins of magnitude ½ (Fig. 1(a)) described by the AFM Heisenberg 
exchange interaction Hamiltonian

(1)
where Si is the spin operator at the ith site of the square plaquette, J1 is the strength of the n.n. 
exchange interaction, J 2 that of the diagonal exchange interaction. The eigenvalue problem can be 
solved in the separate subspaces corresponding to the different values of Sz tot , which is a good 
quantum number. The results are displayed in the following:
S z tot =+2 
ψ 1 =| ↑ ↑ ↑ ↑ 〉

E 1 =( J1  + J2 /2  ) 
(2) 

Journal For Basic Sciences

Volume 22, Issue 12, 2022

ISSN NO : 1006-8341

PAGE NO: 735



S z tot =+1 
ψ 2 = 1/2 ( | ↑ ↑ ↑ ↓ 〉 -| ↑ ↓ ↑ ↑ 〉 ) 

E 2 =-( J2 /2) 
(3) 

ψ 3 = 1/2 ( | ↑ ↑ ↓ ↑ 〉 -| ↓ ↑ ↑ ↑ 〉 ) 

E 3 =-( J2 /2) 
(4) 

ψ 4 = 1/4 ( | ↑ ↑ ↑ ↓ 〉 +| ↑ ↑ ↓ ↑ 〉 +| ↑ ↓ ↑ ↑ 〉 +| ↓ ↑ ↑ ↑ 〉 ) 

E 4 =( J1  + J2 /2  ) (5) 
ψ 5 = 1/2 ( | ↑ ↑ ↑ ↓ 〉 +| ↑ ↓ ↑ ↑ 〉 -| ↑ ↑ ↓ ↑ 〉 -| ↓ ↑ ↑ ↑ 〉 ) 

E 5 =(- J1  + J2 /2  )  (6) 
S z tot =0 
ψ 6 = 1/2 ( | ↑ ↑ ↓ ↓ 〉 -| ↓ ↓ ↑ ↑ 〉 ) 

E 6 =-( J2 /2  ) (7) 
ψ 7 = 1/2 ( | ↑ ↓ ↓ ↑ 〉 -| ↓ ↑ ↑ ↓ 〉 ) 

E 7 =-( J2 /2  ) (8) 
ψ 8 = 1/2 ( | ↑ ↓ ↑ ↓ 〉 -| ↓ ↑ ↓ ↑ 〉 ) 

E 8 =(- J1  + J2 /2  )  (9) 
ψ 9 = 1/√6 ( | ↑ ↑ ↓ ↓ 〉 +| ↑ ↓ ↓ ↑ 〉 +| ↓ ↓ ↑ ↑ 〉 +| ↓ ↑ ↑ ↓ 〉 +| ↑ ↓ ↑ ↓ 〉 +| ↓ ↑ ↓ ↑ 〉 ) 

E 9 =( J1  + J2 /2  )  (10) 
ψ 10 = 1/2 ( | ↑ ↑ ↓ ↓ 〉 +| ↓ ↓ ↑ ↑ 〉 -| ↑ ↓ ↓ ↑ 〉 -| ↓ ↑ ↑ ↓ 〉 ) 

E 10 = - 3 J2 /2  (11) 
ψ 11 = 1/√12 ( 2| ↑ ↓ ↑ ↓ 〉 +2| ↓ ↑ ↓ ↑ 〉 -| ↑ ↑ ↓ ↓ 〉 -| ↑ ↓ ↓ ↑ 〉 -| ↓ ↓ ↑ ↑ 〉 -| ↓ ↑ ↑ ↓ 〉 ) 

E 11 =(-2 J1  + J2 /2 )  (12) 
S z tot =-1 
ψ 12 = 1/√2 ( | ↓ ↓ ↓ ↑ 〉 -| ↓ ↑ ↓ ↓ 〉 ) 

E 12 =-( J2 /2  ) (13)
ψ 13 = 1/√2 ( | ↓ ↓ ↑ ↓ 〉 -| ↑ ↓ ↓ ↓ 〉 ) 

E 13 =-( J2 /2  ) (14) 
ψ 14 = 1 4 ( | ↓ ↓ ↓ ↑ 〉 +| ↓ ↓ ↑ ↓ 〉 +| ↓ ↑ ↓ ↓ 〉 +| ↑ ↓ ↓ ↓ 〉 )

 E 14 =( J1  + J2 /2  (15) 
ψ 15 = 1/2 ( | ↓ ↓ ↓ ↑ 〉 +| ↓ ↑ ↓ ↓ 〉 -| ↓ ↓ ↑ ↓ 〉 -| ↑ ↓ ↓ ↓ 〉 ) 

E 15 =(- J1  + J2 /2  ) (16) 
S z tot =-2 
ψ16 =| ↓ ↓ ↓ ↓ 〉 

E 16 = J1  + J2 /2  (17) 
There are five distinct eigenvalues:

e 1 = E 1 = E 4 = E 9 = E 14 = E 16 = J1  + J2 /2 

e 2 = E 2 = E 3 = E 6 = E 7 = E 12 = E 13 =- J2 /2 

e 3 = E 5 = E 8 = E 15 =(- J1  + J2 /2  )  

e 4 = E 10 =-3 J2 /2   

e 5 = E 11 =(-2 J1  + J2 /2  ) (18) 
When J2 < J1, the ground state is non-degenerate with eigenvalue e5. When J1 < J 2, the ground 
state is non-degenerate with eigenvalue e4.  A QPT occurs at J1 = J2 when the ground state changes 
from ψ11 to ψ10 . In this paper, we focus our attention on this last QPT. The states ψ 11 and ψ 10 
describe two resonating valence bond (RVB) states, 
. A measure of entanglement between the spins at sites k and l is given by the quantity termed 
concurrence. A knowledge of the two-site reduced density matrix  ji, , obtained from the full 
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density matrix by tracing out the spins other than the ones at sites i  and j, enables one to calculate 
concurrence, a measure of entanglement between two spins at sites i  and j  [Hill et al, 1997]. Let 
 ji, be defined as a matrix in the standard basis. One can define the spin-reversed density matrix 

as    yyyy  
~

, where y is the Pauli matrix. The concurrence is given by 
}0,{ 4321   MaxC  where i  's are square roots of the eigenvalues of the matrix 


~

in descending order. An equivalent way of writing C is       }0,4,41,1|2,3{|   MaxC   where 
the matrix elements used in the formula are of the pairwise reduced density matrix in the standard 
basis { | ↑↑ 〉, | ↑↓ 〉, |↓↑ 〉 ,| ↓ ↓ 〉 }. C=0 implies a separable state whereas C=1 corresponds to 
maximum entanglement. 
 If the ground state is degenerate, the T=0 ensemble is described by a density matrix which is an 
equal mixture of contributions from all possible ground states. The density matrix is a limiting case 
of the thermal density matrix as T → 0 . The state ψ RVB1 is the ground state for J2 < J1. In this case, 
the n.n. concurrences C 12 = C 23 = C 34 = C 41 =0.5 , i.e., the n.n. spin pairs are entangled in equal 
amounts. The concurrences C 13 and C 24 are zero, i.e., the spins at the ends of a diagonal are un-
entangled. At the QCP, J1 = J 2 =J, the concurrences C 12 , C 23 , C 34 , C 41 and C 13 , C 24 are all equal 
to zero. The ground state at this point is doubly degenerate with wave functions ψ RVB1 and ψ RVB2 . 
For J 2 > J1, the ground state is given by ψ RVB2 . The n.n. concurrences C 12 , C 23 , C 34 and C 41 
are now zero whereas C 13 = C 24 =1 . 
We now discuss the finite temperature entanglement properties of the spin tetramer. For the four-

spin cluster, the thermal density matrix is 
(T) 1

Z
e H /kBT

. One can define a critical 
temperature Tc beyond which the entanglement between n.n. spins disappears. One can show that 
in the parameter regime of interest, the thermal entanglement between the diagonal spins is zero so 
that T c can be taken as the critical temperature beyond which the entanglement between any two 
spins is zero. T c tends to zero we approach the QCP J 2 /J1 =1 (figure 2). For J 2 > J1 , the n.n. 
concurrences are zero. 
We next calculate the concurrence for pairwise entanglement between the spins located at the ends 
of a diagonal. The critical entanglement temperature T c , beyond which the entanglement between 
spins located at the ends of a diagonal disappears, is also the temperature beyond which the 
pairwise entanglement between any two spins vanishes, since in the parameter regime of interest, 
the n.n. concurrences are zero at all T . Conclusively, in the T=0 case, the two sets of concurrences 
( i ) C 12 , C 23 , C 34 , C 41 and ( ii ) C 13, , C 24 are mutually exclusive. For finite values of the 
concurrences belonging to the first set, the values of the concurrences belonging to the second set 
are zero and vice versa. 
We now examine whether four-spin entanglement exists in the thermal state of the tetramer. This is 
done by calculating the state preparation fidelity F defined as 
F( ρ ) =〈< ψ GHZ | ρ ( T ) | ψ GHZ >〉  where | ψ GHZ 〉 = 1 2 ( | ↑ ↓ ↑ ↓ 〉 +| ↓ ↑ ↓ ↑ 〉 ) is the four-spin 
Greenberger-Horne-Zeilinger (GHZ) state [12]. The sufficient condition for the four-particle ( N=4 
) entanglement is given by F( ρ ) > ½.  F( ρ ) = 2/3 ,i.e., > 1/2 as T → 0 indicating the presence of 
four-spin entanglement in the ground state of the tetramer. The critical entanglement temperature, 

, beyond which the four-spin GHZ-type entanglement vanishes is obtained from a solution of 
the equation F( ρ ) = 1/2 . The value obtained is less than the critical temperature beyond which the 
pairwise entanglement between individual spins vanishes. We next consider a tetramer with n.n., 
diagonal and four-spin exchange interactions. Fig. 2 (solid circles) shows a plot of the said critical 
temperature with the inhomogeneity ratio J 2 //J1. 
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Figure 2: Plot of different critical temperatures versus J 2 //J1.

.

3. Summary and Discussion
In this paper, we consider a spin tetramer (S= 1/2) with n.n., and diagonal AFM exchange 
interactions of strength J1 , and  J2 respectively. We study the ground state and thermal 
entanglement properties of the tetramer in the various limiting cases. At T=0 , QPTs occur as the 
exchange interaction strengths are tuned to certain critical values. The QCP, which can also be 
termed as an ‘entanglement transition point’, J1 = J 2 =J separates two RVB ground states, ψ RVB1 and 
ψ RVB2 . The n.n. concurrences are non-zero only in ψ RVB1 and the other two concurrences associated 
with diagonal spins, are non-zero only in ψ RVB2 . The validity of the result needs to be tested in the 
case of other spin models. 
The study of finite temperature entanglement properties again shows the existence of two 
distinctive parameter regimes with completely different entanglement structures. The n.n. 
concurrences are non-zero only when J2 < J1  and the concurrences associated with diagonal spins 
are non-zero only when J1<J2. At J1 = J 2 , all the six concurrences are zero. This is because the 
system becomes exactly non-bipartite in nature at that point, i.e, we can not separate the system 
into two subsystems where spins of one subsystem only interacts with the spins of the other one. 
The critical entanglement temperature, ,, beyond which entanglement between two spins 
disappears is computed. The magnitude of  is highest when J2 =0. A measure of the four-
spin entanglement in the thermal state of the tetramer is obtained by calculating the State 
preparation fidelity F( ρ ) . The critical temperature, , beyond which the GHZ-type four-spin 
entanglement disappears is calculated and one finds that the critical temperature successfully 
signals the onset of the entanglement transition point, i.e., the QCP. Aslo, this temperature is lesser 
than its pairwise counterpart, which shows that the GHZ-type multipartite correlations vanishes at 
a lower temperature but we still have pairwise correlations upto a higher temperature. 
There is a host of experimental data on molecular magnets and other magnetic systems which are 
yet to be analysed in terms of the entanglement properties of the systems [13]. Appropriate finite 
temperature measures of the different types of entanglement need to be developed so that contact 
between theory and experiments can be made. A challenging task ahead is to develop suitable 
measures of multipartite entanglement, which can encompass the different types of multipartite 
quantum correlations in a quantum system.
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