
 

A Control Chart Approach to Optimize Sojourn 
Times of Customers in K-policy Queues 

 
R. Sivasamy∗1 W.M. Thupeng1 K. Kebotsamang1 

1Department of Statistics, University of Botswana, Private Bag 0022, Gaborone Botswana 

 

Abstract 

This article presents a control chart approach that optimizes the sojourn times of 
customers in a dual rate queuing model for serving a single queue with a K-policy. 
Each member of the initial space D_1 = {0,1,2, … , K} is served by a single server (𝑆ଵ) 
with an average service rate of μଵ per unit time. When the queue length increases to 
a higher space D_2 = {K + 1,  K + 2,   … }, an additional server (𝑆ଶ) is installed to join 
the main server (𝑆ଵ)  to provide service at a rate of μ2 = μ1+μ (μ > 0) per unit time. 
When each service is started at a starting point with a queue length of j = 0 or 
greater, no prioritization is allowed regardless of the amount of work available on 
the system. The arrival process is a Poisson process with an average rate of λ. Based 
on a predefined target level (i.e. maximum queue length or maximum latency), the 
K-policy is optimized using a modified Shewart-like control chart approach. By 
providing simulation time weights, each performance metric of interest is calculated 
and used in the proposed control chart. To find the optimal value for the queue 
length K = 𝐾଴ and install the second server, a number table is created numerically to 
plot this optimal value. 
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1. Introduction 

One of the foremost concerns of any service provider is the time customers have to 
spend waiting for service. Queuing models are often used to predict queue length and 
job waiting time. These timeout predictions can help us determine the optimum resource 
allocation, such as the number of servers needed to maintain the pre-set timeouts for all 
jobs. For example, we may use the models to determine system capacity needs and install 
a new server to keep job downtime within a pre-set target level. 

Numerous authors have proposed several infinite capacity queue models using 
probabilistic and theoretical metric representations of distributions such as queue length, 
waiting time and busy interval. However, we can only find finite capacity scenarios in 
most of the queuing systems in practice such as in banks, airport counters and hospitals. 
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In addition, if the maximum number of customers, n, per session is less than the maximum 
capacity of the system (N), then the chance that a queue length takes any value between 
n and N is zero. This calls for some novel methods that can be used to obtain a best 
finite capacity model to capture most of our real-life waiting line aspects. 

The application of queueing models has been the subject of intensive research studies 
mainly because of their ability to approximately represent real life systems. For a basic 
understanding of queuing theory, researchers can refer to [1–4]. Shore [6, 7] uses 
conventional approximation to create Shewhart control charts for variable data and 
attributes. Montgomery [5] and Sivasamy and Jayanthi [8] describe important issues 
related to statistical process control (SPC) and product control theory. Statistical 
control charts for monitoring client latency in M/M/1 queues are described in Zhao and 
Gilbert [11]. For more information on single-queue applications and process control 
methods, see the references in Sivasamy [8–10]. 

This paper proposes a control chart approach to choosing the optimal value for a thresh- 
old queue length K based on some objective functions related to the M/M/1/K policy 
queues and the G/G/1 queue in order to determine which K-policy would be optimal. It 
is hoped that the introduction of the K-policy leads to a waiting time that is less than the 
waiting time for jobs processed by any other queue without a K-policy. Among the main 
observable characteristics in queues, the number of users in the system can be controlled 
to keep waiting times as minimal as possible. The design of efficient control charts is an 
attempt to monitor and control such systems. The control charts proposed here can be 
applied to monitor infinite queues with Markovian arrivals, exponential service times, and 
s identical parallel servers. 

The rest of the paper is organized as follows. Section 2 deals with an M/M/1/K-policy 
queues where one of its applications to the waiting line of patients of hospitals is discussed. 
Section 3 extends the methodology to a few G/G/1/K-policy queues whereas section 4 
discusses M/G/1/K-policy queues. In each case, an optimal value of queue length K is 
fixed from a table of values constructed for different combinations of input values and, 
simulated performance measures are used to construct Shewhart-like control charts for 
illustrative purposes. Section 5 presents concluding remarks and scope for future research. 

 

2. Methodology 
In this section, we derive conditional distributions of waiting time for customers of a 

single server Poisson facility, i.e. M/M/1/K-policy queue, that serves its customers 
according to a state dependent K-policy. The exponential service rate is set to a slow 
rate of µ1 > 0 for all clients waiting conditional on whether the system size, the length 
of the queue (Ls), is less than or equal to some integer threshold K. If the system size, Ls 
is larger than K, the service rate changes to a faster rate of µ2 = (µ1 + µ), where µ > 0. 
These constraints introduce the K-policy in the system to allow customers to experience 
shorter waiting times than the job waiting times offered by other M/M/1 queues. 

 
Let the traffic intensity be ρ1 = λ/µ1 and ρ = λ/(µ1 + µ), where λ denotes the mean 

inter arrival times of an exponential distribution. Further, let the probability that the 
queue length equals n be qn = P (Ls = n). Then by adopting the works of Sivasamy 
[9, 10], the distribution, {qn}, of the queue length variable Ls is given by the following 
equation 
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q୨ =

⎩
⎨

⎧
(ଵିఘ)(ଵିఘభ)

ଵିఘିఘభ
಼శభ , 𝑗 =  0

𝑞଴𝜌௜
௝
,    𝑗 = 1,2, . . . , 𝐾

𝑞௄ାଵ𝜌௝ି௄ାଵ,   𝑗 = 𝐾 + 1, 𝐾 + 2, . . . .

                                  (2.1) 

We simulate the performance measures to assess the finite sample performance of the 
proposed control chart approach to optimizing sojourn times of customers in a K-policy 
queue. The same metrics are then used to construct a Shewhart-like control chart and 
a table which records queue length and waiting times for customer arrival number n for 
n = 1, 2, . . ., N1, where N1 is the observed maximum queue length. 

 
For simplicity, we partition the queue length Ls into two variables 𝑉ଵ and V 
defined on the initial space and the higher space 𝐷_1 = {0,1,2, … , K} and 𝐷_2 = {K +

1,  K + 2,   … }, respectively. Now let’s assume that all customers in 𝐷ଵ are served by 
an M/M/1/K queue with arrival rate λ and service rate, μ1 (ρଵ = λ/m𝑢ଵ). Define a 
probability 𝑄௄: 

𝑄௄ = ∑ 𝑞௝
௡
௜ୀ଴ =  

(ଵି஡)൫ଵି஡భ
಼శభ൯

(ଵି஡)൫ଵି஡భ
಼శభ൯ା(ଵି஡భ)஡భ

಼శభ                                (2.2) 

If we let 𝑉ଵ be the system size and 𝑉ଵ(𝑛) = P(𝑉ଵ = 𝑛) be the steady state probability 
that there are n customers in the underlying M/M/1/K queue, then 

𝑉ଵ(𝑛) =
ଵି஡భ

ଵି஡భ
಼శభ ρଵ

௡; n = 0,1,2, … , K                               (2.3) 

 
Furthermore, every customer in the D2 subspace is served by another M/M/1 queue with 
arrival rate, λ and service rate, µ1+µ, with traffic intensity of ρ= λ/(µ1+µ) and probability 
1−QK. Thus, if V (n) = P (V = n) is the steady state probability of the underlying M/M/1 
queue, then 

V(n) = (1 − ρ)ρn ;   n = 0, 1, 2, . . . ∞ (2.4) 

Thus under the K-policy, the joint distribution of the system size G = Ls, say g(n) = 
P (G = n), is now re-organized as a convex combination of two proper geometric 
distributions V1(n) and V (n), with probabilities QK and 1 − QK and ρ1, respectively: 

g(n) = (1 − QK)V(n) + QKV1(n) (2.5) 
Consider any random variable, X, having a probability mass function f (n) = P (X = n) ∞ 

and and an rth raw moment, 𝐸(𝑋௥) = ∑ 𝑛௥ஶ
௡ୀ଴ 𝑓(𝑛). The latter formula can be used to 

compute both the raw and central moments of 𝑉 ∼ 𝑉(𝑛),  𝑉ଵ ∼ 𝑉ଵ(𝑛) and G∼ 𝑔(𝑛). That 
is, the moments of G ∼ 𝑔(𝑛) are : 

µG = (1 − QK)µV + QKµV1 (2.6) 
σG = (1 − QK)σV + QKσV1 (2.7) 
νG = (1 − QK)νV + QKνV1 (2.8) 

where µG, σG and νG are the mean, standard deviation and the skewness measure of the 
queue size G, respectively. 

Using the results in equations 2.6 – 2.8, we are now able to develop a control chart for 
the mean queue size, µG, by employing the methodology of Shore [6, 7] for the attributes 
data with 3-σ control limits: 

 
UCL = µG + 3σG + 1.324σGνG − 0.5 (2.9) 

CL = µG (2.10) 
LCL = µG − 3σG + 1.324σGνG + 0.5 (2.11) 
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It is noticed that when the skewness measure takes the value zero, i.e., skew(G)=0, the 
proposed control chart automatically reduces to the traditional Shewhart chart. Hence, 
the modified chart limits for the number of customers in the system may be viewed as a 
natural extension of the traditional Shewhart control chart by adding a measure of skew- 
ness. 

We use Little’s law to relate the capacity of a queuing system, the average time spent 
in the system, and the average arrival rate into the system without knowing any other 
features of the queue. Since the mean waiting time, wn = n/λ for each queue length, 
Ls = n according to the Little’s law, we claim that P (Ls = n) = P (Ls/λ = n/λ). Hence, 
the empirical distribution of the waiting time statistic, W = wn = n/λ; n = 0, 1, 2, . . ., 
has the same distribution as the queue size Ls. Therefore, to monitor the waiting 
statistic, W, we have the following approximate 3-σ control limits: 

 
UCL = µW + 3σW + 1.324σW νW − 0.5 (2.12) 

CL = µW (2.13) 
LCL = µW − 3σW + 1.324σW νW + 0.5 (2.14) 

 
To actually apply the control limits in equations 2.12 – 2.14, we should observe the 
arrival and service time of an appropriate number of customers, the average inter-
arrival time (1/𝜆መ) and the average service time of an appropriate number of customers 
(1/𝜇̂) for both the first and second servers. Each is a simulated estimate with λ෠ =
(𝑀 − 1)/ ∑ 𝐴௡

ெିଵ
௡ୀଵ  and μො = 𝐾/ ∑ 𝑛 = 1௄𝐵௡. 

 
The variance test of Chi-square, χଶ, can be applied to the null hypothesis that a set of 
independent observations 𝑆௡: 𝑛 = 1,2, … , 𝑁 is drawn from an exponential distribution 
with parameters μ and variance σଶ. That is, 𝐻଴: σଶ = 1/μଶ. Under 𝐻଴, the test statistic 
follows Chi-square distribution with (N-1) degrees of freedom: 

෍
(𝑆௡ − 1/μො)ଶ

(1/μො)ଶ

ே

௡ୀଵ

 

 
We can therefore monitor the queue length or sojourn period of the customers in the 
system base based on the accepted values. As a result, we can make the best decisions 
regarding the K-policy and its optimization using the proposed chart control process. 
Thus, the simulation helps us locate the arrival and departure epochs for any number of 
prefixed arrivals, for example 150 used in the simulation in the next section, and to use 
the accepted values by the variance test of Chi-square. 

 
3. Simulation 
Suppose we are interested in the ATM queue. We can graphically describe the operation 
of this system by plotting the number of customers present at the ATM; system status. 
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Every time a customer arrives, the chart increases by one unit while the customer leaves 
decreases the graph by one unit. This graph (called a sampling line), can be obtained 
from observing an actual survey, but can also be constructed artificially. The artificial 
construction and analysis of the resulting sample path (or multiple sample paths in more 
complex cases) is simulation. 

The above sample path consisted of only horizontal and vertical lines, as customer 
arrivals and departures occurred at distinct points of time, what we refer to as events. 
Between two consecutive events, nothing happens - the graph is horizontal. If the number 
of possible events is finite, we call the simulation a "discrete event." So simulation is 
generally about pretending you’re working with a real thing while actually working with 
an imitation, so discrete event simulation can serve as an approximation. 

 
3.1. Waiting time monitoring and M/M/1 queues under an optimum K- 

policies 
We randomly fix n = 150, λ = 0.5, µ = 0.03, µ1 = 0.27, and K = 7, 10, 12, 15, 17, 20, 23 
and 27, in order to assess the finite sample performance of the proposed control chart. 
We simulate the arrival times, service start and end times, and departure epochs for each 
customer based on the fixed parameters above. Then the number of customers present 
and the waiting time were calculated for each arrival and departure from the simulated 
data. Furthermore, the mean inter-arrival times, and mean service times were computed. 

We also used the chi-square statistic tested the hypothesis of no difference between the 
estimated and the given values of the arrival and service rates λ = 0.5, µ = 0.27, µ1 = 0.03 
is performed by the chi-square test. Then, for those values validated by the chi-square 
test, we calculate the numerical values of the theoretical expressions through, the system 
size Ls, the sojourn time W , control limits and the timeout value for n = 150 customers 
managed by the M/M/1/N/K-policy system. 

The results of the simulation in Table 1 show that the maximum queue length reached 
at the time of the migration is 17 out of 150 arrivals. Also recorded in Table Table 1 are 
some other important simulation outputs for different values of K. As K varies from 17 to 
27, all clients are processed by the M/M /1/N (> 17)/K-policy queue with λ = 0.5 and 
µ = 0.27. The corresponding control graphs observed at the arrival and departure points 
are plotted in Figures 1a and 1b to monitor waiting times against transition numbers 1–
300 together with the control lines. 

 
Table 1. The control limits for M/M/1/N(>17) /K-policy queues when n = 150, 
λ = 0.25, µ1 = 0.27, µ = 0.03 and for K = 7, 10, 12, 15, 17, 20, 23 and 27. 

 

K Max L UCL CL LCL Max W  UCLw CLw LCLw 
7.00 11.00 11.20 4.10 0.10 44.00 46.32 16.41 1.11 
10.00 14.00 14.62 5.87 -0.72 56.00 59.97 23.47 -4.37 
12.00 17.00 16.75 7.80 -1.23 68.00 68.49 31.21 -6.43 
15.00 17.00 15.70 8.11 -0.83 68.00 64.32 32.42 -4.82 
17.00 17.00 15.37 8.30 -0.73 68.00 62.97 33.21 -4.42 
20.00 17.00 15.37 8.30 -0.73 68.00 62.97 33.21 -4.42 
23.00 17.00 15.37 8.30 -0.73 68.00 62.97 33.21 -4.42 
27.00 17.00 15.37 8.30 -0.73 68.00 62.97 33.21 -4.42 
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Important decisions can be made from the results in Table 1. For example, suppose the 
intensive care unit (ICU) of a medical facility wants to be advised on reducing the waiting 
times of their customers. The administrator’s goal of treatment may be to ensure that 
the patient is not delayed by more than 45 units of time. From Table 1, only a maximum 
of 11 patients will wait in the ICU and no patient will wait for more than 45 units of 
time when K is 7. Also, the queue length is between (K =) 7 and 11, so the average wait 
time per patient is 16.41 minutes if a second server is installed. This case is represented in 
Figure 1a with control limits and Figure 1b for K=7 and maximum wait = 45 units of time. 

 
 

 
Figure 1a: 
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Figure 1. Control charts for monitoring queue lengths based on a simulated data 
set observed from 150 arrivals leading to 300 transitions 

 
 

Consider another case; Suppose some health department wants to set its own goals and 
set a best K-policy, with no reference to control limits. In the case the goal of the 
administrator of the health Department is to choose a value of K that guarantees a 
maximum waiting time of about 56 time units, i.e. UCLW = 59.97, in this case the 
targeted 56 time units is lower than 59.97. Hence, the better value for K is 10 (see Table 
1). Further, the maximum expected queue length is 15 and average waiting time for 
queue is 23.47 time units. 

Similarly, if the maximum waiting time set by the administrator is between 59.97 and 
68.49 time units (for example, 62 or 65 time units), the optimal policy is K = 12. That 
indicates that the second server should be installed whenever the queue length reaches the 
value 12 and at the same time whenever the queue length falls below 12, the second server 
should be removed. 
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3.2. Waiting Time monitoring and G/G/1 Queues under an optimum 
K-policy 

As an extension of the methodology applied in the preceding sections for applications of 
M/M/1 queues, an analysis of G/G/1 queues operating under a best K policy is now 
investigated. Here, we extend the above methodology to G/G/1/K-policy queue models 
with a general inter-arrival distribution, a general service time distributions and one 
server. The inter-arrival times and service times are generated from the respective 
distributions given in Tables 2, Table 3, and Table 4. The service times of the second 
server are generated from a general distribution which is reported in Table 4. This 
second server happens as a slow speed server as compared with the service rate of the 
first server reported in the Table 3. 

 
Table 2. Inter arrival (A) distribution, λ=0.25 

 
 Time units 2 3 9  
Probabilities 0.5 0.25 0.25 

 Mean (1/λ = 4) SD = 2.92 CV(A) = 0.73  

 
Table 3. Service (S1) time distribution, µ=0.294 

Time units 2 4 5 
Probabilities 0.4 0.4 0.2 
Mean (1/µ = 3.4) SD = 1.2 CV(S) = 0.35 

 
Table 4. Service (S2) time distribution, µ1 = 0.04 

 

Time units 20 25 30 
Probabilities 0.2 0.6 0.2 

 Mean (1/µ1 = 25)  
 

The steady state characteristics of G/G/1/K-policy queues are then simulated as before 
for 45 arrivals. Replacing the input data and the exponential parameters by new input 
values n = 45, λ = 0.25, µ = 0.294, µ1 = 0.04 and K ∈ {4, 6, 9, 10, 12, 15, 17} in the 
simulation algorithm used for the M/M/1/K-policy queues, and running the algorithm, 
we obtained results presented in Table 5. 

 
Table 5. The control limits for G/G/1/N(>14)/K-policy queues when n=45 
λ=0.25, µ=0.2941, µ1=0.04 and K ∈ {4,6,9,10,12,15, 17} 

 
K Max L UCL CL LCL Max W UCLw CLw LCLw 
4.00 8.00 6.87 2.85 -0.44 32.00 28.97 11.41 -3.28 
6.00 10.00 8.70 4.07 -0.84 40.00 36.31 16.28 -4.85 
9.00 11.00 10.83 6.42 -1.37 44.00 44.82 25.68 -6.98 
10.00 13.00 11.79 7.00 -1.03 52.00 48.66 28.02 -5.61 
12.00 14.00 12.36 7.94 -1.22 56.00 50.92 31.77 -6.40 
15.00 14.00 12.39 8.04 -1.28 56.00 51.06 32.16 -6.63 
17.00 14.00 12.39 8.04 -1.28 56.00 51.06 32.16 -6.63 

The following observations can be easily made from Table 5: 
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(1) If K varies between 15 and 17, all clients are processed by the G/G /1/K-policy 
queue with λ = 0.25 and µ = 0.2941. Corresponding control maps covering all 90 
(=45+45) arrivals. Comparing the UCL, Max L with the current value of K=15 
or 17 in Table 5. Since a few sample points can fall above the UCL due to the fact 
max L=14, we conclude that the current K =15 (or 17) value is to be changed to 
a value less than 15. This means the system is busy throughout the observational 
period. 

(2) Assuming that the experimental unit is a patient, assume that the administrator 
does not aim to delay the patient for more than 45 minutes. This decision can be 
reached from Table 5. With K = 9, there are only up to 11 clients waiting in the 
system, with no patients having to wait for more than 44 minutes. In addition, the 
average waiting time per patient is 26 minutes, and all clients are handled by the 
policy G/G /1 /K (= 9) on both servers λ = 0.25, µ = 0.2941 and µ1 = 0.04. If, 
instead, the administrator chooses a K value with a maximum timeout of around 
36 minutes, then the better value for K is 6, the maximum expected queue length 
is 10, and the average wait time is 16.28 minutes 

4. Conclusion 
Using simulated Models for M/M/1/K-policy queues and G/G/1/K-policy queues, we 
have developed numerically tractable control limits for monitoring the waiting times of 
customers and provided numerical illustrations. The modified control chart proposed in 
this investigation ensures that queueing models require relatively small amount of data 
and simple algorithms. 

We now conclude with the following recommendation: In order to deal with 
management of resources in any kind of service facilities like healthcare facilities, the 
proposed control chart for monitoring the waiting time of customers/patients is 
strongly recommended over other tools. This type of chart can be used as a practical 
tool to quickly assess job latency and compare different options to provide the best QoS. 
Overall, medical service resources are limited, but demand is often high. 

Future studies will develop smart, easy-to-implement policies for asset management. 
Further, each simulation model presented in this article can be used in inventory, web ser- 
vices, call centers, insurance management, reliability, and many other service operations. 
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