A Note on a Result of Harell II - Kurata - Kröger

Pratiksha M. Kadam
Assistant Professor, Statistics Department, K. C. College, HSNC University, Mumbai
Maharashtra, India

$$
\begin{aligned}
& \text { Abstract: Let } \Omega \text { be any non-empty open subset of } \mathbb{R}^{d} \text {, In this paper we generalise the } \\
& \text { following result of [1] for any divergence free smooth vector field } V \text { on } \mathbb{R}^{d} \text {. } \\
& \text { Let } f \in C^{1}(\Omega) \text { and } v \text { be any unit vector of } R^{d}, B \subseteq \Omega \text { open subset of } R^{d} \text { such that } \bar{B} \subseteq \\
& \Omega . \text { Let } \\
& B_{\varepsilon}=\{x+\varepsilon v \mid x \in B\} \text { and } n \text { is the outward unit normal field of } \Omega \text { on } \partial \Omega \text {. Then } \\
& \qquad \lim _{t \rightarrow 0} \frac{1}{\varepsilon}\left(\int_{B_{\varepsilon}} f^{2} d x-\int_{B} f^{2} d x\right)=\int_{\partial \Omega} f^{2}<v, n>d s
\end{aligned}
$$

Keywords: Weak partial derivative, Divergence,Sobolev space.

1. Introduction

Let Ω be any open non empty subset of $R^{d}, u \in H^{2}(D)$ and V be a divergence free vector field associated with a 1-parameter group of diffeomorphisms of R^{d}. Now we would like to prove the result of [1] mentioned in the abstract for the vector field V.

2. Statement of the Main Result

Theorem 2.1 Let Ω be a domain in R^{d}. Let $\left\{\psi_{t}\right\}_{t \in R}$ be 1-parameter group of diffeomorphisms of R^{d} associated with a divergence free vector field V.
Let $\Omega_{t}=\psi_{t}(\Omega),(t \in R)$. Then for any $u \in H^{2}(D)$,
$\lim _{t \rightarrow 0} \frac{1}{t}\left(\int_{\Omega_{t}} u^{2} d x-\int_{\Omega} u^{2} d x\right)=\int_{\partial \Omega} u^{2}\langle V, \mathrm{n}\rangle d x$,
where n denotes the outward unit normal field of the domain Ω on its boundary $\partial \Omega$.

3. Preliminaries

Let Ω be any open non empty subset of $R^{d} . p \geq 1$ be any real number and $L^{p}(\Omega)$ class of all real valued measurable functions defined on Ω for which $\int_{\Omega}|u(x)|^{p} d x<0$. Let $D(\Omega)$ denote the collection of all real valued smooth functions defined on Ω having their compact support in Ω.

Definition 3.1

For $\beta=\left(\beta_{1}, \beta_{2}, \cdots, \beta_{d}\right) \in\left(Z^{+}\right)^{d}$, we put $|\beta|=\beta_{1}+\beta_{2}+\cdots+\beta_{d}$ and set $D^{\beta}=D_{1}^{\beta_{1}} D_{2}^{\beta_{2}} \cdots D_{d}^{\beta_{d}}$. A function $v \in Ł^{2}(\Omega)$ is said to be an ' β-th weak partial derivative' of $u \in Ł^{2}(\Omega)$ if

$$
\int_{\Omega} u D^{\beta} d x=(-1)^{|\beta|} \int_{\Omega} v \backslash \operatorname{varphi} d x \forall \varphi \in D(\Omega)
$$

The β-th weak partial derivative of u, when exists, is denoted by $\partial^{\beta} u$.

Definition 3.2

For each $k \in N$, we define Sobolev space $H^{k, p}(\Omega)$ by

$$
H^{k, p}(\Omega)=\left\{u \in L^{p}(\Omega) \mid \partial^{\beta} u \in L^{p}(\Omega) \text { for }|\beta| \leq k\right\}
$$

For $u \in H^{k, p}(\Omega)$, the Sobolev norm of u is given by

$$
\|u\|_{H^{k, p}}=\left(\sum_{|\beta| \leq k}\left\|\partial^{\beta} u\right\|_{L^{p}(\Omega)}^{p}\right)^{\frac{1}{p}}
$$

When $p=2$, we denote $H^{k, p}(\Omega)$ by $H^{k}(\Omega)$. The closure of $D(\Omega)$ in $H^{k}(\Omega)$ is denoted by $H_{0}^{k}(\Omega)$.

Definition 3.3

Let $\boldsymbol{F}(x)=\left(f_{1}(x), f_{2}(x), \cdots, f_{d}(x)\right)$ be a smooth vector field defined on a bounded domain Ω in R^{d}. Then the divergence divF of the vector field \boldsymbol{F} is the function defined on Ω by

$$
(\operatorname{div} \boldsymbol{F})(x)=\sum_{j=1}^{d} \frac{\partial f_{j}}{\partial x_{j}}(x), \quad(x \in \Omega) .
$$

\boldsymbol{F} is said be a divergence free vector field on a domain Ω, if $\operatorname{div} \boldsymbol{F}(x)=0 \forall x \in \Omega$

4. Some Required Results

Lemma 4.1

Let Ω be a non-empty open subset of R^{d} and let $u \in H^{2}(\Omega)$. Then $u^{2} \in H^{1,1}(\Omega)$
Proof:
$\int_{\Omega} u^{2} d x=\left\|u^{2}\right\|_{L^{1}(\Omega)}<\infty u^{2} \in L^{1}(\Omega)$
$\therefore \int_{\Omega}\left|\frac{\partial u^{2}}{\partial x_{i}}\right| d x=2 \int_{\Omega}\left|u \frac{\partial u}{\partial x_{i}}\right| d x$
$\leq 2\|u\|_{L^{2}(\Omega)}\left\|\frac{\partial u}{\partial x_{i}}\right\|_{L^{2}(\Omega)}$
$\leq 2\|u\|_{H^{2}(\Omega)}^{2}<\infty$.
$\therefore \frac{\partial u^{2}}{\partial x_{i}} \in L^{1}(\Omega) \forall i=1,2, \cdots, d$.
From (1) and (2), $u^{2} \in H^{1,1}(\Omega)$.

Lemma 4.2

Let $\left\{\psi_{t}\right\}_{t \in R}$ be the 1-parameter group of diffeomorphisms of R^{d} associated with the vector field V. Let $j_{t}(x)=\operatorname{det}\left(D \psi_{t}(x)\right)$. Then $\left.j_{t}^{\prime}(x)\right|_{t=0}=\operatorname{divV}(x)$.

Proof:

$$
\begin{gathered}
j_{t}(x)=\operatorname{det}\left(D \psi_{t}(x)\right) \\
V(x)=\left(v_{1}(x), v_{2}(x), \cdots, v_{d}(x)\right) \\
\psi_{t}(x)=x+t V(x)+O_{2}(t) \\
\therefore D \psi_{t}(x)=I d_{d \times d}+t D V(x)+\text { Higher order terms in } t \\
\therefore j_{t}(x)=\operatorname{det}\left(I d_{d \times d}+t D V(x)+\cdots\right) \\
\therefore j_{t}(x)=\operatorname{det}\left(\begin{array}{ccc}
1+\frac{\partial v_{1}}{\partial x_{1}}+\cdots, & \frac{\partial v_{1}}{\partial x_{2}}+\cdots, & \cdots, \\
\frac{\partial v_{2}}{\partial x_{1}}+\cdots, & 1+\frac{\partial v_{2}}{\partial x_{2}}+\cdots, & \cdots, \\
\vdots & \vdots & \frac{\partial v_{2}}{\partial x_{d}}+\cdots \\
\frac{\partial v_{d}}{\partial x_{1}}+\cdots, & \frac{\partial v_{d}}{\partial x_{2}}+\cdots, & \cdots, \\
\vdots & 1+\frac{\partial v_{d}}{\partial x_{d}}+
\end{array}\right)=\sum_{j=1}^{d} \frac{\partial v_{j}}{\partial x_{j}} \\
\therefore j_{t}(x)=\operatorname{divV}(x) .
\end{gathered}
$$

5. Proof Of Theorem 2.1

Proof:

$$
\begin{align*}
\operatorname{div}\left(u^{2} V\right)= & \sum_{j=1}^{d} \frac{\partial\left(u^{2} v_{j}\right)}{\partial x_{j}} \\
& =\sum_{j=1}^{d}\left(u^{2} \frac{\partial v_{j}}{\partial x_{j}}+v_{j} \frac{\partial u^{2}}{\partial x_{j}}\right) \\
& =u^{2} \sum_{j=1}^{d} \frac{\partial v_{j}}{\partial x_{j}}+\sum_{j=1}^{d} v_{j} \frac{\partial u^{2}}{\partial x_{j}} \\
& =u^{2} \operatorname{divV}+<\nabla u^{2}, V> \\
& =<\nabla u^{2}, V>\quad(\because \operatorname{div} V=0) \tag{3}
\end{align*}
$$

$\therefore \operatorname{div}\left(u^{2} V\right)=\left\langle\nabla u^{2}, V\right\rangle$
Let $j_{t}(x):=\operatorname{det}\left(D \psi_{t}\right)(x),\left(x \in R^{d}\right)$. Then $j_{0}(x)=1 \quad \forall x \in R^{d}$ and by lemma 4.2 $j_{t^{\prime}}(x):=\left.\frac{d j_{t}}{d t}\right|_{t=0}(x)=\operatorname{div}(V(x))$.
By lemma $4.1 u^{2} \in H^{1,1}(\Omega)$. By the change of variable formula for integration $\lim _{t \rightarrow 0} \frac{1}{t}\left(\int_{\Omega_{t}} u^{2} d x-\int_{\Omega} u^{2} d x\right)=\lim _{t \rightarrow 0} \int_{\Omega} \frac{\left(u^{2} \circ \psi_{t}\right) j_{t}-u^{2}}{t} d x$.
By Dominated Convergence theorem,

$$
\begin{align*}
& \lim _{t \rightarrow 0} \frac{1}{t}\left(\int_{\Omega_{t}} u^{2} d x-\int_{\Omega} u^{2} d x\right) \\
& =\int_{\Omega} \lim _{t \rightarrow 0}\left(\frac{\left(u^{2} \circ \psi_{t}\right) j_{t}-u^{2}}{t}\right) d x \\
& \left.=\int_{\Omega}\left(u^{2} \circ \psi_{t}\right)^{\prime} j_{0}+j_{t}^{\prime} u^{2} \circ \psi_{0}\right) d x \tag{6}
\end{align*}
$$

Claim 5.1: $\left.\left(u^{2} \circ \psi_{t}\right)^{\prime}\right|_{t=0}=<\nabla u^{2}, V>$ almost everywhere on Ω.

Proof of claim 5.1:

By lemma $4.1 u^{2} \in H^{1,1}(\Omega)$

$$
\begin{align*}
\left.\frac{d}{d t}\left(u^{2} \circ \psi_{t}\right)\right|_{t=0} & =\left.D u_{x}^{2}\left(\frac{d}{d t} \psi_{t}\right)\right|_{t=0} \tag{7}\\
& =D u_{x}^{2}(V(x)) \tag{8}\\
& =<\nabla u^{2}, V>(x) \tag{9}
\end{align*}
$$

Hence the claim.
Claim $\left.5.2 \frac{d}{d t}\left(\left(u^{2} \circ \psi_{t}\right) j_{t}\right)\right|_{t=0}=<\nabla u^{2}, V>(x)+u^{2}(x) \operatorname{div}(V(x))$.

Proof of claim 5.2:

$\left.\frac{d}{d t}\left(\left(u^{2} \circ \psi_{t}\right) j_{t}\right)\right|_{t=0}$
$=\left.j_{0}(x) \frac{d}{d t}\left(u^{2} \circ \psi_{t}\right)(x)\right|_{t=0}+\left.\left(u^{2} \circ \psi_{0}\right)(x) \frac{d}{d t} j_{t}(x)\right|_{t=0}$
$=\left.\frac{d}{d t}\left(u^{2} \circ \psi_{t}\right)(x)\right|_{t=0}+\left.u^{2} j_{t}^{\prime}(x)\right|_{t=0} \quad\left(\because j_{0}(x)=1\right)$
Hence by claim 5.1 and lemma 4.2,

$$
\left.\frac{d}{d t}\left(\left(u^{2} \circ \psi_{t}\right) j_{t}\right)\right|_{t=0}=<\nabla u^{2}, V>(x)+u^{2}(x) \operatorname{div}(V(x))
$$

Thus from claim 5.1 ,claim 5.2 and (3)

$$
\lim _{t \rightarrow 0} \frac{1}{t}\left(\int_{\Omega_{t}} u^{2} d x-\int_{\Omega} u^{2} d x\right)=\int_{\Omega}<\nabla u^{2}, V>d x
$$

Thus by Gauss Divergence Theorem,

$$
\lim _{t \rightarrow 0} \frac{1}{t}\left(\int_{\Omega_{t}} u^{2} d x-\int_{\Omega} u^{2} d x\right)=\int_{\partial \Omega} u^{2}<V, n>d s
$$

Hence the theorem.

6. Conclusion

The theorem in [1] is true for the general vector field with the suitable assumptions (i.e. Divergence free vector field).

7. References

[1] Harrell II, Kröger P., Kurata K., On the placement of an obstacle or a well so as to optimize the fundamental eigenvalue., SIAM journal on Mathematical Analysis, Vol. 33, 1, (2001)

