
Serial and Parallel execution of Genetic N
Queens Algorithm

Riddhi Singhal
Dept. of Computer Science and

Engineering,
Ramaiah Institute of Technology

Bangalore, India
riddhisinghal06@gmail.com

K Divyasri
Dept. of Computer Science and

Engineering,
Ramaiah Institute of Technology

Bangalore, India
divyasri751@gmail.com

Mallegowda M
Dept. of Computer Science and

Engineering,
Ramaiah Institute of Technology

Bangalore, India
mallegowdam@msrit.edu

Abstract - Serial processing is the one in which one task is finished at a moment and all the tasks are carried out by a
single processor sequentially. The processor receives lists of tasks, and completes each one one at a time while delaying the
completion of all others. Parallel processing is the one in which multiple tasks are carried out simultaneously by different
processors.There are multiple processors at play. Multiple task queues exist in the operating system, and various
processors work on several tasks at once. Large-scale computations can be completed more quickly due to parallel
computing, which makes use of multiple processors at once. Programmes can now be executed in much less wall-clock
time because of the time savings offered by parallel computing. The N Queen problem is the placement of N chess queens
on a N–N chessboard without any queens attacking one another. No two queens can therefore be found in the same row,
column, or diagonal to find a solution. This is a comparison study of the N Queen solution based on genetic algorithms in
serial and parallel execution environments.

Keywords - Serial and Parallel programming, N Queens problem, Genetic algorithm.

I. INTRODUCTION

When processing in serial mode[1], each task is
finished by the CPU individually. Following that, the
other tasks are completed in a particular order. An
operating system's programmes have a number of
tasks that they must accomplish. One processor is
used for serial processing. The processor must carry
out each of these responsibilities, but they are all
completed individually. Other tasks are held in a
queue until the processor completes the one it is
working on. So, each task is completed one at a time.
Data transfers happen piecemeal because the CPU is
under increased strain. The term "sequential
processing" or "serial processing" is thus used to
describe this process.

Multiple processors are employed in parallel
processing[2]. Each processor's assigned tasks are
finished concurrently. Data is sent in bytes as a result,
and each CPU has less work to do. The bus is used by
the processors for primary memory access and
interprocessor communication. Every CPU operates

with its own local data. Since each processor
functions independently, the failure of one does not
affect the operation of the others. As a result, parallel
processing increases throughput while simultaneously
increasing reliability.

A genetic algorithm[3] is a search heuristic that is
based on natural selection. It is used to solve optimal
or nearly optimal solutions to constrained and
unconstrained optimization problems which
otherwise would take an eternity to solve. It uses an
iterative approach to find the optimum result,
selecting the best answer from a range of best
answers.

NP-complete problems are a set of problems that can
be solved by a non-deterministic turing machine in
polynomial time. In other words, these are problems
for which no effective solution has been discovered.
They have a high level of complexity of the order of
2n or n!, which makes it impossible to solve them
using deterministic methods in real time.

Journal For Basic Sciences

Volume 22, Issue 12, 2022

ISSN NO : 1006-8341

PAGE NO: 497

mailto:riddhisinghal06@gmail.com
mailto:divyasri751@gmail.com
mailto:mallegowdam@msrit.edu
kushi nadh
Textbox

kushi nadh
Textbox

kushi nadh
Textbox



One of the simplest NP-Complete problems might be
the N-Queens[4] Completion problem. It entails
arranging n queens on a n × n chessboard so that no
two queens square off against one another, that is,
there is no intersection between them along any of
the three axes-horizontally, vertically or diagonally.
Because we are choosing whether or not to place a
Queen there, the time complexity is O(n2). The
N-queens puzzle has an O(NXN) time complexity for
the worst-case "brute force" solution. This means that
it will search for N queens in N positions throughout
a NxN board, N times.

II. RELATED WORK

In [5] Jianli et al. concentrated on how to speed up
the evaluation function to resolve variation 2 of the N
Queens problem using heuristic techniques. To
evaluate potential answers for the N Queens problem,
three parallel CPU strategies, four parallel GPU
schemes, and a serial scheme are offered. The
experimental results show that the coarse-grained
GPU technique outperformed its single-threaded
CPU counterpart by a maximum of 307 times for a
large-scale N-Queens problem. The speedup is
increased to 9.3 when the coarse-grained GPU
technique is used to solve the N-Queens problem
variant 2 using simulated annealing with a problem
size of no more than 3000. If, unlike the existing one,
device memory is reused in numerous evaluation
function calls, the performance of the coarse-grained
GPU technique can be significantly enhanced. By
using NVidia NVVP to read the hardware counters in
the GPU, assess the program's micro performance
bottleneck, and optimise some CUDA kernel
configuration parameters, it is possible to further
boost the efficiency of GPU methods. In order to
lessen the cost of thread management and boost
performance for the dynamic parallel scheme, some
sub kernel launch random events can be cancelled
using bypass technology. By using NVidia NVVP to
monitor the hardware counters in the GPU, assess the
program's micro performance bottleneck, and
optimise some CUDA kernel configuration
parameters, it is possible to further boost the
efficiency of GPU methods. In order to lessen the
cost of thread management and boost performance
for the dynamic parallel scheme, some sub kernel
launch random events can be cancelled using bypass
technology. The performance of the algorithm can

then be further enhanced by combining thread-level
parallel technologies with instruction-level
parallelism techniques.

In [6], Thouti et al. used the OpenCL programming
model to explore the cost of solving the N-Queens
issue on GPGPU architecture. It was discovered that
using local memory instead of global memory for
memory pooling significantly speeds up OpenCL.
When explicit global atomics were used instead of
the OpenCL default, the N-Queen problem performed
better. When global atomics was enabled with local
memory, the performance was significantly
improved. Future work includes using these
techniques to tackle other issues like sparse
matrix-vector multiplication, the Euler problem,
shortest paths, and other sorting methods.

Umbarkar et al. [7] summarised the research on the
application of the Parallel Genetic Algorithm (PGA)
on various parallel computing architectures. A brief
summary of theoretical developments and computing
trends was provided, focusing on population diversity
in PGA. With certain of the applications for Massive
Parallel Processing (MPP), Grid, and cluster-fine,
medium, and coarse-grained Genetic Algorithms,
superliner performance was demonstrated. PGA
lowered function evolution, improved solution
quality, explored massive population sizes, and
successfully addressed challenges with big ranges
and large dimensions when implemented on parallel
systems. It has been noted that while GAs are utilised
to address cloud optimization issues, they are not
actually deployed on the cloud.

In order to solve the N-queens issue on a
multicomputer platform, Lazarova et al. [8] examines
the effectiveness of parallel genetic algorithms.
Utilising a ring topology and an island-based parallel
genetic method, randomly picked chromosomes
move in both directions dynamically. It is possible to
implement the algorithm utilising flat (pure MPI) or
hybrid (MPI+OpenMP) programming models.
According to both the parallel workload (board size)
and cluster size, the findings demonstrate the parallel
computational model's strong scalability. The
application scales up and down with the size of the
multicomputer with roughly proportional speedups
and great parallel system efficiency. Performance

Journal For Basic Sciences

Volume 22, Issue 12, 2022

ISSN NO : 1006-8341

PAGE NO: 498



analysis demonstrates that the hybrid parallel
programming paradigm more effectively utilises the
parallel hardware resources of the target
multicomputer platform. Future work should
investigate methods for regulating certain genetic
algorithm parameters, such as migration size and
mutation rate, on the performance of the parallel
computational model.

Turky et al. [9] adopted a genetic algorithm to solve
the N-Queens problem. The tests for the N-Queens
problem were carried out on a range of populations
and board sizes. Each result is presented as the
average of ten runs with the same board size and
population.On average, it took lO23.845 seconds to
find a solution for the biggest board size, n = 2000.
The technique was written in Java, and simulations
were ran on an AMD Athlon computer running
Windows XP 2002 at 1.92 GHz with 512 MB of
RAM. According to tests, a genetic algorithm with a
repair function can find several answers for a given
number of queens at various times. The best time to
locate an ideal solution based on the repair function
suggests this.

III. PROPOSED WORK

Genetic Algorithms[11] are a class of search and
optimization tools motivated by evolution. The most
common evolutionary processes used by evolutionary
algorithms are selection, variation, and replacement
operations.

Initialization, which generates a starting population
of potential solutions, kicks off the evolutionary
process. The most common initialization technique is
to simply generate a population of binary strings that
have been initialised at random. A selection
procedure selects a group of parents from the parent
population at each chronological step based on each
individual's fitness values so that the fittest ones will
have a higher likelihood of carrying on genetic
information to succeeding generations. After the
selection procedure has fully filled the parent
population, a child population is produced that will
serve as the foundation for the upcoming generation.
Variation operators are used to create this child
population from participants of the parent population.

Crossover and mutation are the two most popular of
these techniques.

Crossover function: The cross over function plays a
crucial role in producing superior offspring for
attaining the global optimum for a non-convex
function. Parents are separated into pairs by
crossover. Then, portion of the genetic material from
each of these parents is exchanged.

Mutation: The common approach in evolutionary
algorithms for adding new genetic material to the
population is mutation. To prevent the process from
being trapped at a local optimum, mutation is crucial
in genetic algorithms.

IV. METHODOLOGY

The following steps were followed for implementing
genetic N Queens algorithm-

1. As part of population initialization, we first
initialise a randomly generated population of
500 chromosomes. Each chromosome is
actually an unique permutation of values in
a vector of size N. (1, 2, 3... N)

2. After creating a random population of
potential solutions, the population's
chromosomes are sorted and ranked
according to fitness values. The fitness
scores of the individuals are also
determined.

3. Every chromosome's fitness has been
designed so that k queens on the same
diagonal position will increase the fitness
value by k-1 points. All of these data points
are added up to determine the fitness value.

4. A selection operator will determine how
many chromosomes will be passed on to the
next generation, favouring the better
individuals depending on their standing in
the population.

5. To produce offspring whose fitness values
will be calculated simultaneously, selected
chromosomes will participate in crossover
operation as parents. Due to the perception
that higher crossover probabilities produce
offspring with higher fitness values, they are
typically maintained at a high level.

Journal For Basic Sciences

Volume 22, Issue 12, 2022

ISSN NO : 1006-8341

PAGE NO: 499



6. Next, a mutation operator that randomly
alters a few chromosomes is applied to new
people depending on a mutation probability.
The probability of mutation is typically
maintained low.

7. Children who have been evaluated, along
with their parents, make up the population of
the following generation.

Once the difference between the two optimal solution
from subsequent generations is below a specified
tolerance limit, steps 2 to 5 are iterated until a
predetermined amount of generations, or iterations,
have been reviewed or the solution improvement rate
meets a predetermined threshold. During this process,
the population initialization, fitness function,
crossover, and mutation operators were used.

Fitness Function: Consider the N x N configuration
of the chess board (c1, c2, c3, etc.). First, we'll
determine if many Queens are located on the same
(↗) directed diagonals.This happens if,
For p and q ∈ {1,2 … 𝑁}
(c𝑖 − p) == (c𝑗 − q)

The subsequent check, similar to the previous check,
the following check will determine if many Queens
are on the same (↖) directed diagonals, this happens
if
For p and q ∈ {1,2 … 𝑁}
(𝑐𝑖 + p) == (𝑐𝑗 + q)

In the event that any of the aforementioned
circumstances arise, we tally the fitness value. Which
demonstrates unequivocally that the fitness value of
the fittest chromosome is zero (0).

V. EXPERIMENTS AND RESULTS

Fig. 1 depicts the plot between number of threads and
execution time (in seconds) for both serial and
parallel execution for the N Queens problem[11] with
N being set to 8. As the number of threads increases,
the time required for series execution increases and
for parallel execution decreases. This is due to the
fact that when a thread is executed in a series, each
following thread must wait for the completion of its
preceding thread's execution before continuing. Due
to this, the process is slow and time-consuming. In

contrast, each thread in the process can operate
simultaneously on a different processor during
parallel execution, which eliminates the wait time for
threads. Thus, simultaneous execution takes less time
to complete.

Fig. 1 Plot between the number of threads and execution time (in
seconds)

TABLE 1. Serial and Parallel execution time (in seconds)

Number of
threads

Time for Serial
execution (in sec)

Time for Parallel
execution (in sec)

4 0.35482 0.31

8 0.376237 0.326279

12 0.366418 0.35351

16 0.374465 0.350131

32 0.454899 0.343237

64 0.470792 0.335346

VI. CONCLUSION AND FUTURE WORK

In many cases, the size and/or complexity of the
problem makes it nearly impossible to solve it on a
single computer, specifically with the limited
memory that is available. This issue can be resolved
using parallel computing, which also quickly and
efficiently addresses larger issues. The classic
N-queen puzzle is one of computer science's most

Journal For Basic Sciences

Volume 22, Issue 12, 2022

ISSN NO : 1006-8341

PAGE NO: 500



difficult problems. Backtracking, which has a very
high time complexity, is a well-known approach to
solve the N Queen puzzle. As n rises, complexity
increases exponentially. Metaheuristics like the
Genetic Algorithm can be used to solve the N-Queens
problem in a sensible timeframe.

Future research should look into the N Queens
problem execution time for greater values of N while
concurrently increasing the number of threads.

REFERENCES

[1] Verwey, W.B., Shea, C.H. & Wright, D.L. A cognitive
framework for explaining serial processing and
sequence execution strategies. Psychon Bull Rev 22,
54–77 (2015).
https://doi.org/10.3758/s13423-014-0773-4

[2] Kasahara, H., Obata, M., Ishizaka, K. (2001).
Automatic Coarse Grain Task Parallel Processing on
SMP Using OpenMP. In: , et al. Languages and
Compilers for Parallel Computing. LCPC 2000. Lecture
Notes in Computer Science, vol 2017. Springer, Berlin,
Heidelberg. https://doi.org/10.1007/3-540-45574-4_13

[3] Dozier, G.; Bowen, J.; Bahler, D. (1994). Proceedings
of the First IEEE Conference on Evolutionary
Computation. IEEE World Congress on Computational
Intelligence - Solving small and large scale constraint
satisfaction problems using a heuristic-based
microgenetic algorithm. , (), 306–311.
doi:10.1109/icec.1994.349934

[4] I. Martinjak and M. Golub, "Comparison of Heuristic
Algorithms for the N-Queen Problem," 2007 29th
International Conference on Information Technology
Interfaces, 2007, pp. 759-764, doi:
10.1109/ITI.2007.4283867.

[5] Jianli Cao, Zhikui Chen, Yuxin Wang, He Guo,
"Parallel Implementations of Candidate Solution
Evaluation Algorithm for N-Queens Problem",
Complexity, vol. 2021, Article ID 6694944, 15 pages,
2021. https://doi.org/10.1155/2021/6694944

[6] Thouti, K., & Sathe, S. R. (2012). Solving N-Queens
problem on GPU architecture using OpenCL with
special reference to synchronisation issues. 2012 2nd
IEEE International Conference on Parallel, Distributed
and Grid Computing. doi:10.1109/pdgc.2012.6449926

[7] A. J. Umbarkar, M. S. Joshi. (2013). Review of Parallel
Genetic Algorithm based on Computing paradigm and
diversity in search space. ICTACT JOURNAL ON
SOFT COMPUTING, JULY 2013, VOLUME: 03,
ISSUE: 04. ISSN: 2229-6956

[8] Lazarova, Milena. (2008) “Efficiency of parallel
genetic algorithm for solving N-queens problem on
multicomputer platform” 9th WSEAS International
Conference on EVOLUTIONARY COMPUTING
(EC’08), Sofia, Bulgaria, May 2-4, 2008 , 51-56 pages

[9] A. M. Turky and M. S. Ahmad, "Using genetic
algorithm for solving N-Queens problem," 2010
International Symposium on Information Technology,
2010, pp. 745-747, doi: 10.1109/ITSIM.2010.5561604.

[10] Crawford, Kelly D. (1992). [ACM Press the 1992
ACM/SIGAPP symposium - Kansas City, Missouri,
United States (1992..-..)] Proceedings of the 1992
ACM/SIGAPP symposium on Applied computing
technological challenges of the 1990's - SAC '92 -
Solving the n-queens problem using genetic algorithms.
, (), 1039–1047. doi:10.1145/130069.130128

[11] M. Plauth, F. Feinbube, F. Schlegel and A. Polze,
"Using Dynamic Parallelism for Fine-Grained, Irregular
Workloads: A Case Study of the N-Queens Problem,"
2015 Third International Symposium on Computing
and Networking (CANDAR), 2015, pp. 404-407, doi:
10.1109/CANDAR.2015.26.

Journal For Basic Sciences

Volume 22, Issue 12, 2022

ISSN NO : 1006-8341

PAGE NO: 501

https://doi.org/10.1155/2021/6694944

