
Wireless Edge Device Intelligent Task
Offloading in Mobile Edge Computing using

Hyper Heuristics

B. Vijayaram1*, V. Vasudevan2†

1,2Kalasalingam Academy of Research and Education, Kalasalingam University, Tamilnadu, India.

Abstract

To overcome the computation limitation of resource constrained wireless IoT edge
devices, providing an efficient task computation offloading and resource allocation in
distributed mobile edge computing environment is considered a challenging and
promising solution. Hyper-heuristic in recent times is gaining popularity due to its
general applicability of the same solution to solve different types of problems. Hyper-
heuristic is generally a heuristic method or framework which iteratively evaluates and
chooses the best low-level heuristic, to solve different types of problems. In this paper
we try to solve wireless device task offloading in mobile edge computing, which is a
non-convex and NP-Hard problem by using a proposed novel Hyper Heuristic
Framework using Stochastic Heuristic Selection (HHFSHS) using Contextual Multi-
Armed Bandit (CMAB) with Epsilon-Decreasing strategy, considering two key Quality
of Service (QoS) objectives computation time and energy consumption. These multi-
objective criteria are modeled as a single-objective optimization problem to minimize
the latency and energy consumption of wireless devices without losing the Pareto
optimality. Finally, evaluate its performance by comparing it with other individual
meta-heuristic algorithms.

Keywords: Mobile Edge Computing; Hyper Heuristics; Meta Heuristics; Task

Offloading; Optimization

1 Introduction
In the past decades, we have witnessed many revolutionary wireless mobile devices, wearables,

and IoT sensors, all these small resource constraint devices need an innovative way of doing effective

* Correspondence Author
† Secondary Author

ISSN NO : 1006-8341

PAGE NO: 279

Journal For Basic Sciences

Volume 22, Issue 12, 2022

computation outside their hardware resource and getting the results back faster for decision making,
with the introduction of 5G, this can be achieved by utilizing mobile edge computing infrastructure.
With the adoption of 5G network the expectation for a faster network is inevitable to achieve fast
speed, low end-to-end latency, and high reliability. Large-scale Applications like High-definition
video, virtual reality (VR), Augmented reality (AR), IoT wireless sensor-based industrial applications,
UAV, and Autonomous Vehicles will all eventually generate a large amount of data. This not only
puts a strain on the system but also backhaul. To provide better service to the end users for latency-
sensitive computational operations, the core network 'Users' devices are placed closer to the network's
edge. This will lessen the burden on the server while lowering the delay in the network and processing
as computations are done at the mobile edge server placed in proximity to the edge devices.

Fig 1: Mobile Edge Computing Environment

To address the issues of low processing capacity and restricted resources in wireless edge devices,

the concept of Mobile edge computing (MEC) computation offloading has been presented by the
industry. Computation offloading is the process of allocating computationally heavy jobs to a nearby
Mobile Edge Server (MES) which has appropriate processing and computing resources. MES is then
queried for the derived results. Fig 1 shows a typical Mobile edge computing environment where
Wireless Devices (WD) {WD1, WD2, .. WDn} connect to the nearest MES {MES1, MES2, ..
MESn}, all these MES are interconnected through fiber optics or high bandwidth wireless channels.
Further, all MES have fiber optics connections with the Centralized Cloud Data Center (CCDC). WDs
take a stochastic intelligent decision to connect to the least utilized nearby MES for task offloading

ISSN NO : 1006-8341

PAGE NO: 280

Journal For Basic Sciences

Volume 22, Issue 12, 2022

and getting the results back either through the same MES or through the CCDC, it depends on the
mobility of the WD. For example, if WD1 which is initially in the range of MES1 starts offloading to
MES1 and being in mobility, it comes to the range of MES3 and retrieves the results from MES3 due
to MES collaboration with CCDC.

More research are carried out to intelligently offload the task to mobile edge servers using meta
heuristics, but that does not bring in some generality to the solution space and applicability of
algorithm to wide variety of problems, this motivates to bring in Hyper-heuristics [1] to achieve the
generality for solving wide variety of problems from different domains. However, the major challenge
is in generating heuristics or selecting heuristics automatically.

A hyper-heuristic is an interesting methodology of selecting or generating heuristics to solve

different hard computational search problems in an automated way using the same solution in hand.
According to the author Burke [2] in his book, he categorized hyper-heuristics into two broad
categories as heuristic selection and heuristic generation (refer Fig 2 – adapted from [2]), this is the
first level in our first dimension (the nature of the search space). The second level in this dimension
corresponds to the distinction between constructive and local search hyper-heuristics. This
categorization deals with the nature of the low-level heuristics used in the hyper-heuristic framework.
Construction and Perturbation are the terms used to refer these low-level heuristics classes.

Fig 2: Hyper Heuristic classification based on feedback and heuristic search space

Almost all existing hyper heuristics search contains two stages: heuristics selection and its move

acceptance. Fig 3 (adapted from [2]) depicts the high-level element blocks and its interaction of Hyper
heuristic using perturbative heuristic selection and Acceptance Criteria move acceptance.

ISSN NO : 1006-8341

PAGE NO: 281

Journal For Basic Sciences

Volume 22, Issue 12, 2022

Fig 3: Hyper Heuristic using Perturbative heuristic selection

.

2 Related Works
Task computation offloading and resource allocation strategies are interesting problems to be

solved in mobile edge computing and vehicular edge network. Several interesting research has been
done in this field using Meta-Heuristic, Neural Networks, and Fuzzy Logic. Task Offloading can be
thought of as completely offloading to MES, or partially offloading only memory-intensive
processing to the MES and the remaining processing is done locally, or the entire task is locally
computed without offloading to the MES. Most of the task which depends on external data or needs
aggregated data from different sources are offloaded to the MES, because of its nature to download a
lot of data from external sources and do data aggregation which is memory-intensive processing. It is
reasonable to offload such tasks to MES completely.

Mareli et al. [3] used bio inspired meta-heuristic algorithm cuckoo search to optimize task

offloading by tweaking the switching parameter. Miao et al. [4] proposed a new intelligent
computation offloading based MEC architecture in combination with artificial intelligence (AI)
technology. Their methodology effectively reduces the total task delay with the increasing data and
subtasks. Li and Wang et al. [5] solved multi-objective optimization problem by using particle swarm
optimization (PSO) with energy constraint MES placement algorithm to arrive at the optimal solution.
Huang et al. [6] used whale optimization algorithm (WOA) meta heuristic to solve the multi target

ISSN NO : 1006-8341

PAGE NO: 282

Journal For Basic Sciences

Volume 22, Issue 12, 2022

problem targeting two criteria like task energy consumption and task processing time. Coronel et al.
[7] used Meta-Heuristic algorithms with multiple objectives for placement optimization of wireless
switches in Electrical Power distribution system. Zakaryia et al. [8] used Queuing network and
evolutionary Genetic Algorithm to offload task effectively focusing on minimizing the task response
time. Feng et al. [9] used hybrid algorithm GWO-WOA for solving task offloading problem of IOT
devices in mobile edge computing environment while considering three optimization criteria. Khan et
al. [10] in their paper proposed a task scheduling method based on a hybrid optimization algorithm is
presented, which effectively schedules jobs with the least amount of waiting time. Anisetti et al. [11]
in their paper proposed an energy efficient task offloading and transmission power allocation scheme
that reduces completion time and energy consumption. You et al. [12] in their paper proposed a PSO
algorithm for task offloading from a resource constrained wireless edge devices to MES considering
energy and low latency multi objective criteria. Pham et al. [13] in their paper tried to solve resource
allocation in wireless network using WOA. Li et al. [14] in their paper tried to fill the gap of task
deadline constraints which other existing offloading algorithm failed to do so.

Zhuang et al. [15] in their paper proposed hyper-heuristic algorithm for fog computing to achieve

QoS requirements. Alshareef et al. [16] in their paper used multi objective hyper heuristic approach to
solve multi objective software module clustering optimization problem by combining and controling
three three genetic and evolutionary algorithms namely multi-objective genetic algorithm (MOGA),
non-dominated sorting genetic algorithm (NSGAII) and strength pareto evolutionary algorithm
(SPEA2). Huang et all [17] in their paper explored meta-heuristics energy-efficient computation
offloading (EE-CO) approach to minimize energy consuption focusing on delay and security
constriants.

3 System Method
In this paper we will discusses about the case of Wireless Devices (WDs) offloading their tasks to

nearby MES based on their computation data size. The collection of WDs is represented as N = {1, 2,
.., n}. Task computation time needed to finish the task is represented as TC = {tc1, tc2, ‥, tcn}, and
task data size is represented as TS = {ts1, ts2, ‥, tsn}, where ‘i’ is a particular wireless device in the
collection N. Each wireless device’s task is considered as the combination of TC and TS, which can
be represented as 𝑡𝑎𝑠𝑘௜ = { 𝑡𝑐௜ , 𝑡𝑠௜ }. Network Access points or Wifi Routers is used for
communication and data transfer between wireless devices and MES. For task computation, wireless
device can completely do it locally or completely offload to MES or partially do locally and partially
at edge server. This can be represented as an offloading decision set Y = {y1, y2, ‥, yn}, where yi
ranges between [1, 0], both inclusive. If yi = 1, then WDi completely offload its task to MES and if yi
= 0, then WDi does the full task computation within itself. If yi > 0 and yi < 1, then WDi offloads yi ×
100% of tasks to the MES and remaining (1 − yi) × 100% of tasks done locally. For offloading
decision on edge server, edge server’s available processing capacity is considered, and the system
method is a combined minimization of overall task processing time / completion time and amount of
energy consumed for completing that task. we assert that by employing the Hyper Heuristics approach
to identify the optimal task offloading decision to do local computing or mobile edge computing or
combination of both and thereby latency and energy can be greatly reduced.

ISSN NO : 1006-8341

PAGE NO: 283

Journal For Basic Sciences

Volume 22, Issue 12, 2022

3.1 Local Computation Model
Here we will formulate the model for task execution locally at wireless device. Let consider

𝑡𝑑௜
௟௢௖ as the local processing time or time delay and 𝑒𝑐௜

௟௢௖ as the energy consumed for processing that
task locally. 𝐹௜

௟௢௖ is denoted as the maximum available CPU cycles of WDi.

Let 𝑓௜

௟௢௖ represent the current available CPU cycles for the computation task at that moment of the
WDi and 𝑡𝑐௜ represent the task required computation time, then the local task processing time or time
delay 𝑡𝑑௜

௟௢௖ to process the task locally by the WDi, is represented as:

𝑡𝑑௜
௟௢௖ =

௧௖೔

௙೔
೗೚೎ (1)

The energy consumption for local task processing is represented as:

𝑒𝑐௜
௟௢௖ = Ϲ൫𝑓௜

௟௢௖൯
ଶ

𝑡𝑐௜ (2)

where Ϲ, is the effective switched capacitance of the device based on its chip architecture.

3.2 Edge Computation Model
Here we will formulate the model for task execution remotely at MES in this section.

Communication rate is considered based on the assumption that mobile devices are connected through
the wireless channel. Let, B represent the bandwidth of the wireless channel, and let’s assume that the
bandwidths for WDs are equally allocated for task offloading. Let, θi is the bandwidth allocated to
wireless channel for WDi. Based on Shannon formula (𝑟௜- channel capacity in bits per sec), the WDi
communication rate (𝑅௜) is represented as [18]:

𝑅௜ = 𝑟௜θ௜ = 𝐵 log ቀ1 +
௧௣೔௖௚೔

஻ேబ
ቁ θ௜ (3)

where 𝑡𝑝௜ is transmission power of WDi and 𝑐𝑔௜ is channel gain of WDi, and 𝑁଴ denotes the
background channel noise. Now, the total task processing time delay has two parts, one is task
transmission time and other is task processing time. 𝑡𝑟𝑎𝑛𝑠𝑇௜

௢ is the task transmission time, and it is
calculated as:

𝑡𝑟𝑎𝑛𝑠𝑇௜
௢ =

௧௦೔

ோ೔
 (4)

Let F denotes the entire available edge server computing resources and 𝑓௜

௘ௗ௚௘
 is the CPU cycles

allocated to the WDi to complete its task at the MES and 𝑝𝑟𝑜𝑐𝑇௜
௘ௗ௚௘

 represent the WDi task
computation time needed at the MES and it is calculated as:

𝑝𝑟𝑜𝑐𝑇௜
௘ௗ௚௘

=
௧௖೔

௙
೔
೐೏೒೐ (5)

The time required for sending back the result or response from MES can be neglected because the size
of the output of the computed data is less. The total time for the WDi to process the offloaded task
completely using the MES is calculated as:

𝑡𝑜𝑡𝑎𝑙𝑇௜
௣

= 𝑡𝑟𝑎𝑛𝑠𝑇௜
௢ + 𝑝𝑟𝑜𝑐𝑇௜

௘ௗ௚௘ (6)

ISSN NO : 1006-8341

PAGE NO: 284

Journal For Basic Sciences

Volume 22, Issue 12, 2022

The overall energy consumption 𝑒𝑐௜

௣ is calculated as:

𝑒𝑐௜
௣

= 𝑡𝑟𝑎𝑛𝑠𝑃௜
௢𝑡𝑟𝑎𝑛𝑠𝑇௜

௢ + 𝑡𝑟𝑎𝑛𝑠𝑃௜
௘𝑝𝑟𝑜𝑐𝑇௜

௘ௗ௚௘ (7)

where 𝑡𝑟𝑎𝑛𝑠𝑃௜

௢ is transmission power required to upload the data from WDi to the MES through the
wireless channel, and 𝑡𝑟𝑎𝑛𝑠𝑃௜

௘ is the power required for the WDi to wait for the result from MES.

3.3 Problem formulation

While formulating this problem, we considered N wireless devices with varying task computation

workloads and task dependencies. The decision Y is made based on TC and TS. Here we consider
both task processing time delay and task energy consumption. There are several ways to solve multi-
objective problems, one way is to optimize the first objective function and try to optimize the second
objective function while maintaining the first objective function value intact. The second way is to
optimize both objective functions simultaneously. Since these two target constraints are a measure of
different metrics, they must be normalized for the calculation to avoid biasing.

So, the equation for calculating total time delay becomes:

𝑇𝑇 = ∑
ቂ(ଵି௬೔)௧௢௧௔௟ ೔்

೗ା௬೔௧௢௧௔௟ ೔்
೛

ቃି்ౣ౟౤

்ౣ౗౮ ି்ౣ౟౤

௡
௜ୀଵ (8)

where 𝑇୫୧୬ is the minimum task processing time delay in the set N, and 𝑇୫ୟ୶ is the maximum task
processing time delay in the set N.

 And the equation for calculating total energy consumption becomes:

𝐸𝐶 = ∑
ቂ(ଵି௬೔)௘௖೔

೗ା௬೔௘௖೔
೛

ቃିாౣ౟౤

ாౣ౗౮ ିாౣ౟౤

௡
௜ୀଵ (9)

where 𝐸୫୧୬ is the minimum task energy consumption in the set N, and 𝐸୫ୟ୶ is the maximum task
energy consumption in the set N.

Combining both objectives, an improved mathematical formula is arrived to minimize the impact of
dimensions and makes the formula controllable using different decision variables. Finally, the target
minimization objective function is formulated as:

𝑍 = 𝑇𝑇 + η𝐸𝐶

= ∑
ቂ(ଵି௬೔)௧௢௧௔௟ ೔்

೗ା௬೔௧௢௧௔௟ ೔்
೛

ቃି்ౣ౟౤

்ౣ ౗౮ି்ౣ౟౤

௡
௜ୀଵ + η ∑

ቂ(ଵି௬೔)௘௖೔
೗ା௬೔௘௖೔

೛
ቃିாౣ౟౤

ாౣ౗౮ିாౣ౟౤

௡
௜ୀଵ (10)

The coefficient η is used as weight to adjust the optimization objective function results. Here we
consider the total time latency target as baseline with coefficient value as 1. The coefficient η of the
total energy consumption which ranges from 0.001 to 1 is adjusted based on careful pareto optimality
study to get the required weighted normalization for the two targets.

ISSN NO : 1006-8341

PAGE NO: 285

Journal For Basic Sciences

Volume 22, Issue 12, 2022

Finally, this optimization problem can be solved using a single target minimization equation given as:

min
௬,஘೔௙

೔
೐೏೒೐

𝑍 (11)

s.t. 0 ≤ 𝑓௜
௘ௗ௚௘

≤ 𝑦௜𝐹, ∀𝑖 ∈ 𝑁

෍ 𝑓௜
௘ௗ௚௘

௡

௜ୀଵ
≤ 𝐹, ∀𝑖 ∈ 𝑁

0 ≤ 𝜃௜ ≤ 𝑦௜𝐵, ∀𝑖 ∈ 𝑁

෍ 𝜃௜

௡

௜ୀଵ
≤ 𝐵, ∀𝑖 ∈ 𝑁

𝑦௜ ∈ [0,1], ∀𝑖 ∈ 𝑁

The aim of the problem is to minimize the objective function Z, considering the two target constraints
namely low energy consumption and low processing time without losing the pareto optimality.

4 Problem Solutions

In this research, three meta heuristics Grey Wolf Optimizer (GWO), Tabu Search (TS) and
Cuckoo Search (CS) are modified and used in low level hyper heuristic selection in the proposed
technique and tested, let discuss those meta heuristics overview and their modifications for using it in
the proposed algorithm.

4.1 Grey Wolf Optimizer

Grey wolf optimizer (GWO) is one of nature inspired meta heuristic swarm intelligence algorithm.

This algorithm is unique from other algorithms due its methodology of adopting social hierarchy and
hunting behavior of grey wolves. Seyedali Mirjali proposed GWO [19] in 2014 and proposed multi
objective (MOGWO) [20] in 2016. In Recent times GWO is used in many optimization research
aspects. In fact, Xu et al [21] proposed a fusioned Cuckoo Search with the Improved GWO algorithm
to achieve better result. Grey wolves usually dwell in packs with some dominant social hierarchy as
shown in Fig 4 (adapted from [19]). These wolves are represented as 4 main groups namely alpha
wolves (α), beta wolves (β), delta wolves (δ), and omega wolves (ω). Wolves which usually lead in
prey hunting are called alpha wolves; wolves which supports helping alpha wolves are called beta
wolves; wolves which helps in guarding the territory boundaries and does the whistle blowing job are
called delta wolves; and wolves which are lazy and does not actively take part in hunting but only
interested in eating the leftover food are called omega wolves, which is usually dominated by other
top category wolves.

ISSN NO : 1006-8341

PAGE NO: 286

Journal For Basic Sciences

Volume 22, Issue 12, 2022

Fig 4: Social Hierarchy of Grey Wolfs

In GWO algorithm, the final optimized fit solution is represented as alpha, then the second less

optimized fit solution is represented as beta and the third least optimized fit solution is represented as
delta. All the left-over trivial solutions are represented as omega. GWO has 3 stages in the algorithm:
encircling, hunting, or attacking, and searching. The positions of the wolves during the encircling
stage, is updated by [19]:

 𝐷ሬሬ⃗ = ห𝐶 ⋅ 𝑋⃗௣(𝑖) − 𝑋⃗(𝑖)ห (12)

where ‘i’ is the iteration index, 𝑋⃗௣ represent the position vector of prey, and 𝑋⃗ represent the

position vector of wolves. 𝐴 and 𝐶 are coefficient vectors, calculated by the below equations:

𝐴 = 2 ⋅ 𝑎⃗ ⋅ 𝑟ଵ − 𝑎⃗ (13)

𝐶 = 2 ⋅ 𝑟ଶሬሬሬ⃗ (14)

Here the variable 𝑎⃗ is non-linearly decreased for ¾ of the iteration and linearly decreased from 2

to 0 for remaining iterations. This is done to support better exploration and exploitation respectively
and variables 𝑟ଵ and 𝑟ଶሬሬሬ⃗ are random absolute vectors in range [0, 1].

During the hunting stage, additional weight coefficient 0.01 is considered for alpha position as

alpha wolfs are closer to the prey, this value can be tweaked based on the convergence behavior and
final positions of the wolves are updated by equation [17]:

𝐷ఈ
ሬሬሬሬሬ⃗ = ห𝐶ଵ ⋅ 𝑋ఈ

ሬሬሬሬ⃗ − 𝑋⃗ห, 𝐷ఉ
ሬሬሬሬ⃗ = ห𝐶ଶ ⋅ 𝑋ఉ

ሬሬሬሬ⃗ − 𝑋⃗ห, 𝐷ఋ
ሬሬሬሬ⃗ = ห𝐶ଷ

ሬሬሬሬ⃗ ⋅ 𝑋ఋ
ሬሬሬሬ⃗ − 𝑋⃗ห (15)

𝑋⃗ଵ = 𝑋⃗ఈ − 𝐴ଵ

ሬሬሬሬ⃗ ⋅ 𝐷ఈ
ሬሬሬሬሬ⃗ , 𝑋ଶ

ሬሬሬሬ⃗ = 𝑋ఉ
ሬሬሬሬ⃗ − 𝐴ଶ

ሬሬሬሬ⃗ ⋅ 𝐷ఉ
ሬሬሬሬ⃗ , 𝑋ଷ

ሬሬሬሬ⃗ = 𝑋ఋ
ሬሬሬሬ⃗ − 𝐴ଷ

ሬሬሬሬ⃗ ⋅ 𝐷ఋ
ሬሬሬሬ⃗ (16)

𝑋⃗(𝑡 + 1) =
(௑భ
ሬሬሬሬሬሬሬ⃗ ∗଴.଴ଵ) ା௑మሬሬሬሬሬ⃗ ା௑యሬሬሬሬሬ⃗

ଷ
 (17)

GWO has good exploitation and exploration ability, which helps in avoiding local minimum trap.

ISSN NO : 1006-8341

PAGE NO: 287

Journal For Basic Sciences

Volume 22, Issue 12, 2022

4.2 Tabu Search
Tabu Search (TS) is one of the meta-heuristic local search algorithms specialized in optimizing the

heuristics model parameters. Some of the local search heuristic methods have the pitfall to stuck in
local minima. TS helps to overcome this problem by enhancing the local search exploration phase by
prohibiting already visited solutions also known as Tabu. TS does sometimes deterministically accept
trivial solutions to avoid local minima convergence. The steps involved in the TS algorithm are given
below,

Algorithm:

Step 1: Start with any random best acceptable solution, say bS = S₀.

Step 2: Generate neighboring random solutions N(bS) based on the current best solution bS.
From N(bS), the solutions that are in the Tabu List are removed except for the solutions that
fit the Aspiration Criteria. This solution will become the new N(bS).

𝑏𝑆ᇱ ∈ 𝑁(𝑏𝑆) = {𝑁(𝑏𝑆) − 𝑇(𝑏𝑆)} + 𝐴(𝑏𝑆) (18)

Step 3: Choose the best solution out of 𝑁(𝑏𝑆) and label this new solution 𝑏𝑆ᇱ. If the solution
𝑏𝑆ᇱ is better than the current best solution, update the current best solution. After, regardless
of if 𝑏𝑆ᇱ is better than 𝑏𝑆, we update 𝑏𝑆 to be 𝑏𝑆ᇱ.

Step 4: Update the Tabu List 𝑇(𝑏𝑆) by removing all moves that are expired past the Tabu
Tenure and add the new move s’ to the Tabu List. Additionally, update the set of solutions
that fit the Aspiration Criteria 𝐴(𝑏𝑆).

Step 5: Search stops if the termination criteria is met or else it will move onto the next
iteration. Termination Criteria is used here is max number of iterations.

4.3 Cuckoo Search

Cuckoo Search (CS) algorithm is one of bio-inspired meta heuristic algorithm developed based on

reproduction behavior of cuckoo birds [14]. Potential solutions are associated with cuckoo eggs in CS.
Cuckoos birds usually lay their eggs in other’s nests with the hope of their off springs being raised by
other. On a random probability say 25%, when the host cuckoos discover those foreign eggs in their
nests, some of the foreign eggs are thrown out of the nest or cuckoos will completely discard that
entire nest. The CS algorithm consist of three basic rules as follows:

 Eggs are laid in random nests by cuckoo bird.

 Best nests which contain best quality eggs are selected and carried forward to next
generation.

 Host cuckoo will identify a foreign egg with a probability pa є [0,1] from a set of random
nests. If foreign egg is found, the host cuckoo can either throw the foreign egg away or
completely abandon the whole nest and build a new nest elsewhere.

ISSN NO : 1006-8341

PAGE NO: 288

Journal For Basic Sciences

Volume 22, Issue 12, 2022

During the iteration, based on the above three rules, the new position of cuckoo nests is updated
by.

x௝(𝑡 + 1) = 𝑥௝(𝑡) + 𝛼 ⊕ Lev 𝑦(𝜆), 𝑖 = 1,2, … , 𝑛 (19)

Here the product ⊕ representative entry-wise multiplication. x௝(𝑡 + 1) denotes new solutions for

cuckoo ‘i’, 𝑥௝(𝑡) denotes the current solutions. The step size is controlled by α > 0, Let’s assume its
value as 1. The levy-flight is provided by following Mantegna’s algorithm.

In Mantegna’s algorithm, the step length s is calculated by

 𝑠 =
௨

|௩|భ/ഁ (20)

where u and v values are arrived based on normal distributions. That is

𝑢 ∼ 𝑁(0, 𝜎௨
ଶ), 𝑣 ∼ 𝑁(0, 𝜎௩

ଶ) (21)

were,

𝜎௨ = ቄ
୻(ଵାఉ)ୱ୧୬ (గఉ/ଶ)

୻[(ଵାఉ)/ଶ]ఉଶ(ഁషభ)/మቅ
ଵ/ఉ

, 𝜎௩ = 1 (22)

This distribution obeys the expected Levy’s distribution for |s| >=|s0| where s0 is the smallest step.

Its value can be carefully chosen between 0.01 to 1.

4.4 Proposed Hyper Heuristic Framework using Stochastic Heuristic
Selection (HHFSHS)

Based on the Heuristic framework depicted in Fig 3, a novel stochastic heuristic selection

based on online learning acceptance criteria feedback is proposed which uses a couple of well-known
meta-heuristics like GWO, CS, and TS as part of the low-level heuristic search with certain careful
parameter tweaks to improve exploration and exploitation behaviors. The reason behind choosing
these three meta-heuristics is based on the performance and behavior to tackle local minima traps and
achieve optimum convergence in most of the problem space. Let’s discuss those modifications on
meta-heuristics below.

The GWO algorithm updates the wolve position just by averaging out the alpha, beta, and delta
positions during each iteration using equation (17), this may lead to a local minimum trap or slow
convergence as alpha position progress slows down due to average calculation. This is seen in the
convergence comparison in Fig 5. To mitigate this, the equation is modified to add a fixed weight to
the alpha wolves' position to emphasize the importance of alpha wolves leading the group. The
encircling and attacking phases of iteration are called as exploration and exploitation phases
respectively, instead of having the linearly decreasing value, this algorithm is modified to use a
nonlinear function for ¾ of the max iteration and a linear function for ¼ of the max iteration to
support exploration and exploitation stochastically.

ISSN NO : 1006-8341

PAGE NO: 289

Journal For Basic Sciences

Volume 22, Issue 12, 2022

The TS algorithm is used to save all prior search best positions and prevents search agents from
searching in previously searched positions, hence enhancing performance.

The CS algorithm updates its nest position using a fixed probability index, say 0.25, using cuckoo
random walk and levy-flights. Walking straight for a time, then turning 90 degrees and continuing
walking, results in high randomness, which aids in local minima avoidance and improves exploration
capabilities.

Using these modified meta heuristic algorithms in low level heuristic search as part of the hyper
heuristic framework, a novel Hyper Heuristic based on perturbation low-level heuristic selection
using Contextual Multi-Armed Bandit (CMAB) Epsilon-Decreasing strategy is formulated with move
acceptance criteria formulated as depicted in equation (23), where 0 represent criteria not satisfied or
loss and 1 represent criteria satisfied or high profit. Epsilon-Decreasing strategy is used to favor

exploration initially and gradually favor exploitation later by starting with higher ϵ value and
decrease over time. Consideration is given such that the rate of decrease shouldn’t be too quick.

During the algorithm iteration, last best convergence is compared with n last convergences, if there is
improvement in the best convergence value, then the chosen low-level heuristic from heuristic Bag is
continued for further iterations, in case there is no improvement in the best convergence value, then a
stochastic heuristic selection is picked using CMAB with Epsilon-Decreasing strategy with an
additional penalization on iteration count for which there is no improvement and continued for further
iteration. This process is repeated till the end of the iteration.

 Acceptance Criteria (AC) = {0,1}, s.t, 𝐶௟ − 𝐶௟ି୬ < 𝐶௧ (23)

 where, 𝐶௟ is last best convergence,
𝐶௟ି௡ is last ‘n’ convergences,
𝐶௧ is convergence tolerance (1e-5)

Based on the above hyper heuristic framework and formulation (refer Fig 3), a novel Hyper Heuristic
Framework using Stochastic Heuristic Selection (HHFSHS) is proposed as below algorithm

Algorithm: Pseudocode of proposed HHFSHS algorithm
 Initialize the Heuristic Bag HBi (i=1, 2,..m) which contain couple of local search heuristics

(GWO, WOA, CS,TS)
Initialize the search space population SPi (i = 1, 2, ..., n)
Max_Iter = 500
Convergence Iteration Count (Ci) = 5
Convergence Tolerance (Ct) = 1e-5
Initialize the Acceptance Criteria (AC) using equation (23)

Hc = Randomly pick 1 Heuristic from HBi; using CMAB Epsilon-Decreasing strategy

Calculate the fitness value for all search agents in the population SPi

ISSN NO : 1006-8341

PAGE NO: 290

Journal For Basic Sciences

Volume 22, Issue 12, 2022

Select Xα (Best Solution) from solutions according to the fitness values
ConvergenceGraph.Add(Xα);

t=1
while t < Max_Iter do

SPi = Update the search agents positions based on Current Heuristic (Hc)
Calculate the fitness value of each search agent in the population SPi
Select Xα (Best Solution) from solutions according to the fitness values

if (AC is not met or no significant convergence)
 Hc = Randomly pick 1 Heuristic from HBi; using CMAB Epsilon-Decreasing
 strategy
 t = t- Ci; //penalize the iteration
 Remove ‘Ci’ number of recent no significance convergence solutions from

ConvergenceGraph // Discard no significant solution
else

ConvergenceGraph.Add(Xα);
end
t = t + 1

end while
Return Xα

5 Experimental Analysis and Results

5.1 Simulation Setup
Bio Inspired Heuristic algorithms like PSOGWO, EGWO, Augmented GWOCS (AGWOCS),

GWO, BAT, Improved GWO (IGWO), WOA, PSO, GWOWOA were compared with HHFSHS and
investigated in MATLAB version R2021b. The test environment was Dell laptop with the following
specifications: RAM of 10 GB, CPU is Intel® Core™ i5-2540M CPU @ 2.60 GHz and 64-bit
windows 10 Pro operating system.

5.2 Test Functions
The unimodal and multi model benchmark test functions used to validate the performance of each

Optimization algorithm are tabulated in Table 1 and Table 2.

Table 1: Uni-model Test Functions

S.No Function Dim Range 𝒇𝒎𝒊𝒏
1

𝑓ଵ(𝑥) = ෍  

௡

௔ିଵ

𝑥ଵ
ଶ

30 [-100,100] 0

2
𝐹ଶ(𝑥) = ෍  

௡

௜ୀଵ

|𝑥௜| + ෑ  

௡

௜ୀଵ

|𝑥௜|
30 [-10,10] 0

ISSN NO : 1006-8341

PAGE NO: 291

Journal For Basic Sciences

Volume 22, Issue 12, 2022

3

𝐹ଷ(𝑥) = ෍  

௡

௜ୀଵ

ቌ෍  

௜

௝ୀଵ

𝑥௜
ଶቍ

ଶ

30 [-100,100] 0

4 𝐹ସ(𝑥) = 𝑚𝑎𝑥
௜

 {|𝑥௜|, 1 ≤ 𝑖 ≤ 𝑛} 30 [-100,100] 0

5
𝐹ହ(𝑥) = ෍  

௡

௜ୀଵ

[100(𝑥௜ାଵ − 𝑥௜
ଶ)ଶ + (𝑥௜ − 1)ଶ]

30 [-30,30] 0

6
𝐹଺(𝑥) = ෍  

௡

௜ୀଵ

(𝑥௜ + 0.5)ଶ
30 [-100,100] 0

7
𝐹଻(𝑥) = ෍  

௡

௜ୀଵ

𝑖𝑥௜
ସ + random [0,1)

30 [-1.28,1.28] 0

Table 2: Multi-model Test Functions

S.No Function Dim Range 𝒇𝒎𝒊𝒏
1

𝐹 (𝑥) = ෍  

௡

௜ୀଵ

− 𝑥௜sin ቀඥ|𝑥௜|ቁ
30 [-

500,500]
-

418.9829
x Dim

2
𝐹ଽ(𝑥) = − ෍  

௡

௜ୀଵ

[𝑥௜
ଶ − 10cos (2𝜋𝑥௜) + 10]

30 [-
5.12,5.12]

0

3

𝐹ଵ଴(𝑥) = −20exp ൮−0.2ඩ
1

𝑛
෍  

௡

௜ୀଵ

𝑥௜
ଶ൲ − exp ቌ

1

𝑛
෍  

௡

௜ୀଵ

cos (2𝜋𝑥௜)ቍ + 20 + 𝑒

30 [-32,32] 0

4
𝐹ଵଵ(𝑥) =

1

4000
෍  

௡

௜ୀଵ

𝑥௜
ଶ − ෑ  

௡

௜ୀଵ

cos ൬
𝑥௜

√𝑖
൰ + 1

30 [-
600,600]

0

5
𝐹ଵଶ(𝑥) =

𝜋

𝑛
൝10sin (𝜋𝑦ଵ) + ෍  

௡

௜ୀଵ

(𝑥௜ − 1)ଶ[1 + sinଶ (3𝜋𝑥௜ + 1)] + (𝑥௡ − 1)ଶ[1 + sinଶ (2𝜋𝑥௡)]ൡ

+ + 𝑦௜ = 1 +
𝑥௜ + 1

4
𝑢(𝑥௜ , 𝑎, 𝑘, 𝑚) = ቐ

(𝑥௜ − 𝑎)௠𝑥௜

𝑥௜

(−𝑥௜ − 𝑎)௠𝑥௜

30 [-50,50] 0

6
𝐹ଵଷ(𝑥) = 0.1 ൝sinଶ (3𝜋𝑥ଵ) + ෍  

௡

௜ୀଵ

(𝑥௜ − 1)ଶ[1 + sinଶ (2𝜋𝑥௡)]ൡ + ෍  

௡

௜ୀଵ

𝑢(𝑥௜ , 5,100,4)
30 [-50,50] 0

7

𝐹ଵସ(𝑥) = ቌ
1

500
+ ෍  

ଶହ

௝ୀଵ

1

𝑗 + ∑  ଶ
௜ୀଵ ൫𝑥௜ − 𝑎௜௝൯

଺ቍ

ିଵ

2 [-65,65] 1

8
𝐹ଵହ(𝑥) = ෍  

ଵଵ

௜ୀଵ

ቈ𝑎௜ −
𝑥௜(𝑏௜

ଶ + 𝑏௜𝑥ଶ)

𝑏௜
ଶ + 𝑏௜𝑥ଷ + 𝑥ସ

቉

ଶ

4 [-5,5] 0.00030

9
𝐹ଵ଺(𝑥) = 4𝑥ଵ

ଶ − 2.1𝑥ଵ
ସ +

1

3
𝑥ଵ

଺ + 𝑥ଵ𝑥ଶ − 4𝑥ଶ
ଶ + 4𝑥ଶ

ସ
2 [-5,5] -1.0316

These optimization test functions complexity quality is defined by the number of peaks

encountered in the function landscape. These peaks can negatively impact the optimization process
when the optimization algorithm gets stuck in between the peaks. Couple of test function results are
shown below for discussion on performance of the proposed algorithm.

ISSN NO : 1006-8341

PAGE NO: 292

Journal For Basic Sciences

Volume 22, Issue 12, 2022

ISSN NO : 1006-8341

PAGE NO: 293

Journal For Basic Sciences

Volume 22, Issue 12, 2022

ISSN NO : 1006-8341

PAGE NO: 294

Journal For Basic Sciences

Volume 22, Issue 12, 2022

ISSN NO : 1006-8341

PAGE NO: 295

Journal For Basic Sciences

Volume 22, Issue 12, 2022

ISSN NO : 1006-8341

PAGE NO: 296

Journal For Basic Sciences

Volume 22, Issue 12, 2022

Fig 5: HHFSHS algorithm Convergence comparison with other Meta Heuristics

5.3 Results and Discussion

Performance evaluation scenarios is setup considering couple of MES in the wireless access area

and couple of WDs (N=30) are distributed around the MES coverage region. Each WD, with its own
computation task, task’s data size and task’s required CPU cycles are randomly generated,
specifically tsi ∼ N (0,20) MB and tci ∼ N (500, 100) cycles/bit. The total available CPU cycles of the
mobile edge servers is F = 30 GHz, and the allocated CPU cycles of the WDi is set to {0.5,0.6, …1.0}
GHz randomly. The transmission power 𝑡𝑟𝑎𝑛𝑠𝑃௜

௢ is set as 100 mW, and the power required to wait
for the result 𝑡𝑟𝑎𝑛𝑠𝑃௜

௘ is set as 10 mW. With these setting, simulation experiment is done to evaluate

ISSN NO : 1006-8341

PAGE NO: 297

Journal For Basic Sciences

Volume 22, Issue 12, 2022

the proposed algorithm. The aim of the proposed algorithm is to get faster and better convergence and
thereby reducing the overall processing time and energy consumption in offloading tasks. As the
multi-objective problem (MOP) is normalized and devised as a single objective minimization
problem, we will consider the performance from the perspectives of convergence and stability. Also,
couple of standard meta heuristic methods also included as comparisons. In our experiment nine other
meta heuristics are evaluated and compared with HHFSHH technique with 3 low level heuristics
GWO, CS, TS tweaked and used in heuristic bag of our proposed heuristic framework. There is no
restriction on choice of low-level heuristics for using in this framework. Some of the key parameters
chosen for evaluation are

 Optimization target function Z. Algorithm is effective if it can arrive at the lowest
minimum value of Z function.

 Overall task processing time. Computation task offloading in mobile edge environment is
delay sensitive and offloading decisions should be taken quickly, otherwise it will fail in
its purpose.

 Overall task energy consumption, as wireless devices typically IoT devices have less
power resource, so it must be effectively used.

 Stability of results in multiple iterations with the same inputs. Meta Heuristic algorithms
have uncertainty due to the facts of its techniques to arrive at the global minimum, which
sometimes stuck at the local optima. The results so obtained is also affected by this kind
of uncertainty. However, these uncertainty in the results should be minimized as low as
possible. The algorithm result may vary for each iteration with same input, as the
stochastic selection of low-level heuristic is based on the CMAB Epsilon-Decreasing
strategy and move acceptance using acceptance criteria evaluation

 Finally, the convergence curves of different heuristics methodology are investigated. The
values of the Z function obtained considering four different characteristics of applications
like Argument Reality, HealthCare, Compute Intensive and Infotainment, with 3 different
workload distributions.

From the result (refer Fig 5), specifically on the figures 5(a), 5(b), 5(c) and 5(d), it is evident that

none of the heuristic converged properly to global minima, but the proposed HHFSHS heuristic has
managed to avoid local minima and converged faster to global minima with lesser processing time. It
also seen in most of the multi-model test functions the proposed algorithm HHFSHS has converged
well compared to other heuristics due to the fact the hyper heuristic scholastically selects the lower-
level search heuristic according to the CMAB Epsilon-Decreasing strategy and move acceptance
using acceptance criteria evaluation. HHFSHS as performed well in terms of convergence in uncertain
problem space due to its adaptable low level heuristic selection dynamically based on the CMAB
Epsilon-Decreasing strategy. AGWOCS a hybrid meta heuristic algorithm relatively performed well
close to the proposed algorithm HHFSHS and performed well than IGWO and WOA as it overcomes
the disadvantage of GWO local minima trap behavior with the advantage of CS to improve global
search and avoid local minima. It also can be derived from result that the lowest function values of the
different heuristics are in the order HHFSHS < AGWOCS < IGWO < WOA.

ISSN NO : 1006-8341

PAGE NO: 298

Journal For Basic Sciences

Volume 22, Issue 12, 2022

Fig 6: Result Comparison

Based on the simulation result (refer Fig 6), it is evidence that the completion time of offloading

task increases with the size of the data increases and energy consumption increases with the size of
the data increases, as more data need to be transferred from wireless device to edge server and get the
processed data back which obviously increase the waiting time thereby consuming more energy in the
wireless device. Our method HHFSHS is the suboptimal completion time and is suboptimal in energy
consumption when the wireless device count is 30. Other algorithms like AGWOCS and IGWO and
WOA relatively performed well when compared to HHFSHS, while other heuristics like PSO and
BAT algorithms has not performed well so not considered for comparison here. From the result it is
evident that the task processing completion time and energy consumption is less for HHFSHS, due to
its faster convergence to find the optimal solution in problem space compared to other Heuristics.

Fig 7: Performance of HHFSHS algorithm with relative percentage tasks

Experiment is done considering four different characteristics of applications like Argument
Reality, HealthCare, Compute Intensive and Infotainment, with 3 different workload distribution i)
80% task offloaded to edge and 20% task in local computation; ii) 50% task offloaded to edge and

ISSN NO : 1006-8341

PAGE NO: 299

Journal For Basic Sciences

Volume 22, Issue 12, 2022

50% in local computation; and finally, iii) 20% task offloaded to edge and 80% task in local
computation. Results based on this setup is shown in Fig 7. It is very clear that as more percentage of
tasks are computed locally, it takes less processing time as there is no involvement of data transfer in
the network to MES and no wait time. It also very clear that as more percentage of tasks are computed
locally, it takes more energy, and it takes less energy when it offloads major percentage of task to
edge server and get the job done.

Table 3: Statistical Analysis on Latency and Energy Consumption

 Latency(s) Energy Consumption(mJ)
Method Mean SD Stand. Err.

of Mean
(SEM)

Mean SD Stand. Err.
of Mean
(SEM)

HHFSHS 0.386 0.392 0.131 417.629 368.285 122.761
AGWOCS 0.431 0.414 0.138 476.381 401.383 133.794
IGWO 0.488 0.446 0.138 576.840 468.111 156.037
WOA 0.584 0.522 0.174 692.115 543.136 181.045

Based on Statistical Analysis (ref Table 3), it is evidence that proposed HHFSHS has low latency

and energy consumption compared other meta-heuristics. Standard Error of Mean (SEM) is less for
HHFSHS compared to other methods, which means it has smoother and consistent behavior in task
offloading for different population samples. All these experimental result analyses provide evidence
that hyper heuristic-based technique has overcome the disadvantage of individual heuristic by
adaptively switching to better lower-level heuristic and adapting generically for different problem
domains. By having a better convergence, the proposed HHFSHS algorithm able to performance
better with reduced energy consumption and faster processing compared to other individual meta
heuristics algorithms.

6 Conclusion and Future Work
In this work, we analyzed a Hyper Heuristic Framework using Stochastic Heuristic Selection

(HHFSHS) for computation task offloading model with the goal to minimize the latency and energy
consumption optimization in MEC. Then, the formulated model is normalized to aid in improving the
model even for multi dimensions. The goal of the formulated model is to arrive at the minimum value.
The proposed HHFSHS algorithm has been applied to solve the optimization problem. The
experiment shows better results of HHFSHS approach compared to other heuristics algorithms.
However, the algorithm proposed still can have better feedback for selection of low-level heuristics.
Since different lower-level heuristic are selected stochastically using CMAB Epsilon-Decreasing
strategy, the results may vary based on the Epsilon value selection, Epsilon decreasing rate and
acceptance criteria resulting in slightly varying result for each run.

Future work will be based on the proposed algorithm going to experiment with other Heuristic

local search algorithms with online feedback mechanism using Deep Reinforcement Learning (DRL)
and evaluate in Vehicular Edge Computing consider mobility as an additional parameter, since

ISSN NO : 1006-8341

PAGE NO: 300

Journal For Basic Sciences

Volume 22, Issue 12, 2022

mobility is one of the key features affecting the task offloading and resource allocation in Vehicular
Edge Network.

Abbreviations
MEC: Mobile Edge Computing; MES: Mobile Edge Server; WD: Wireless Device; DRL: Deep
Reinforcement Learning; QoS: Quality of Service; AR: Augment Reality; VR: Virtual Reality; GWO:
Grey Wolf Optimizer; CS: Cuckoo Search; TS: Tabu Search; WOA: Whale Optimization Algorithm;
AGWOCS: Augmented Whale Optimization Cuckoo Search; IGWO: Improved Grey Wolf
Optimizer; AC: Acceptance Criteria; HHFSHS: Hyper Heuristic Framework using Stochastic
Heuristic Selection; CMAB: Contextual Multi-Armed Bandit.

Declarations

Consent for Publication
No individual human details, images or videos are used during the current study.

Availability of Data and Material
Data sharing not applicable to this article as no datasets were generated or analyzed during the current
study.

Competing Interests
The authors declare that they have no competing interests.

Funding
Not applicable

Authors’ contributions
Conceptualization: B. Vijayaram; Formal Analysis: B. Vijayaram; Methodology: B. Vijayaram;
Investigation: V. Vasudevan; Supervision: V. Vasudevan

Acknowledgements
The authors appreciate the support from guide and professors at Kalasalingam Academy of Research
and Education, Kalasalingam University, Krishnan Koil, TN, India.

Authors’ Information

1Mr. B. Vijayaram – Correspondence Author (Primary Author) is a Research Scholar in Kalasalingam
Academy of Research and Education, Krishnan koil, Tamilnadu, India. Has more than 15 years of
product-based industry experience in security, industrial automation, and medical radiology domain.

2Sr. Prof Dr V. Vasudevan – Secondary Author is working as Registrar in Kalasalingam Academy of
Research and Education, Krishnan koil, Tamilnadu, India. Has a Maths PhD, headed MCA dept of
Kalasalingam University from 1997 to 2003. Then headed the IT dept for over ten years. During the
same period, was the chief superintend of university exams for 6 years, Dean hostels for four years,
Dean admissions & dean placements for three years from 2011 to 2014. Then currently working as a
Registrar from 2013. So, for 25 students completed PhD under my guidance and has the credit 67
international publications. I have 25 years of experience in teaching and research experience.

ISSN NO : 1006-8341

PAGE NO: 301

Journal For Basic Sciences

Volume 22, Issue 12, 2022

References

[

1]
E. Burke, G. Kendall, J. Newall, E. Hart, P. Ross and S. Schulenburg, "Hyper-Heuristics: An

Emerging Direction in Modern Search Technology," in Handbook of Metaheuristics, F. Glover
and G. A. Kochenberger, Eds., Boston, MA: Springer US, 2003, p. 457–474.

[
2]

E. Burke, M. R. Hyde, G. Kendall, G. Ochoa and E. Özcan, "A classification of hyper-
heuristic approaches," 2010, pp. 449-468.

[
3]

M. Mareli and B. Twala, "An adaptive Cuckoo search algorithm for optimisation," Applied
Computing and Informatics, vol. 14, pp. 107-115, 2018.

[
4]

Y. Miao, G. Wu, M. Li, A. Ghoneim, M. Al-Rakhami and M. S. Hossain, "Intelligent task
prediction and computation offloading based on mobile-edge cloud computing," Future
Generation Computer Systems, vol. 102, pp. 925-931, 2020.

[
5]

Y. Li and S. Wang, "An Energy-Aware Edge Server Placement Algorithm in Mobile Edge
Computing," San Francisco, CA, USA, 2018.

[
6]

M. Huang, Q. Zhai, Y. Chen, S. Feng and F. Shu, "Multi-Objective Whale Optimization
Algorithm for Computation Offloading Optimization in Mobile Edge Computing," Sensors, vol.
21, 2021.

[
7]

E. Coronel, B. BarÃ¡n and P. Gardel, "Optimal Placement of Remote Controlled Switches in
Electric Power Distribution Systems with a Meta-heuristic Approach," IEEE Latin America
Transactions, vol. 20, no. 4, p. 590–598, 2022.

[
8]

S. A. Zakaryia, S. A. Ahmed and M. K. Hussein, "Evolutionary offloading in an edge
environment," Egyptian Informatics Journal, vol. 22, pp. 257-267, 2021.

[
9]

S. Feng, Y. Chen, Q. Zhai, M. Huang and F. Shu, "Optimizing computation offloading
strategy in mobile edge computing based on swarm intelligence algorithms," EURASIP Journal
on Advances in Signal Processing, vol. 2021, p. 36, 2021.

[
10]

M. S. A. Khan and R. Santhosh, "Task scheduling in cloud computing using hybrid
optimization algorithm," Soft Computing, 2021.

[
11]

M. Anisetti, X. Gu, L. Jin, N. Zhao and G. Zhang, "Energy-Efficient Computation Offloading
and Transmit Power Allocation Scheme for Mobile Edge Computing," Mobile Information
Systems, vol. 2019, p. 3613250, 2019.

[
12]

Q. You and B. Tang, "Efficient task offloading using particle swarm optimization algorithm
in edge computing for industrial internet of things," Journal of Cloud Computing, vol. 10, p. 41,
2021.

[
13]

Q.-V. Pham, S. Mirjalili, N. Kumar, M. Alazab and W.-J. Hwang, "Whale Optimization
Algorithm With Applications to Resource Allocation in Wireless Networks," IEEE Transactions
on Vehicular Technology, vol. 69, pp. 4285-4297, 2020.

[
14]

Z. Li, V. Chang, J. Ge, L. Pan, H. Hu and B. Huang, "Energy-aware task offloading with
deadline constraint in mobile edge computing," EURASIP Journal on Wireless Communications
and Networking, vol. 2021, p. 56, 2021.

[
15]

Y. Zhuang and H. Zhou, "A Hyper-Heuristic Resource Allocation Algorithm for Fog
Computing," Proceedings of the 2020 the 4th International Conference on Innovation in

ISSN NO : 1006-8341

PAGE NO: 302

Journal For Basic Sciences

Volume 22, Issue 12, 2022

Artificial Intelligence, 2020.

[
16]

H. Alshareef and M. Maashi, "Application of Multi-Objective Hyper-Heuristics to Solve the
Multi-Objective Software Module Clustering Problem," Applied Sciences, vol. 12, 2022.

[
17]

X. Huang, Y. Yang and X. Wu, "A Meta-Heuristic Computation Offloading Strategy for IoT
Applications in an Edge-Cloud Framework," in Proceedings of the 2019 3rd International
Symposium on Computer Science and Intelligent Control, New York, NY, USA, 2019.

[
18]

X. Deng, Z. Sun, D. Li, J. Luo and S. Wan, "User-Centric Computation Offloading for Edge
Computing," IEEE Internet of Things Journal, vol. 8, pp. 12559-12568, 2021.

[
19]

S. M. Mirjalili, S. M. Mirjalili and A. Lewis, "Grey Wolf Optimizer," Adv. Eng. Softw., vol.
69, pp. 46-61, 2014.

[
20]

S. Mirjalili, S. Saremi, S. M. Mirjalili and L. d. S. Coelho, "Multi-objective grey wolf
optimizer," Expert Systems With Applications, vol. 47, pp. 106-119, 2016.

[
21]

H. Xu, X. Liu and J. Su, "An improved grey wolf optimizer algorithm integrated with
Cuckoo Search," in 2017 9th IEEE International Conference on Intelligent Data Acquisition and
Advanced Computing Systems: Technology and Applications (IDAACS), 2017.

ISSN NO : 1006-8341

PAGE NO: 303

Journal For Basic Sciences

Volume 22, Issue 12, 2022

