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Abstract 

To overcome the computation limitation of resource constrained wireless IoT edge 
devices, providing an efficient task computation offloading and resource allocation in 
distributed mobile edge computing environment is considered a challenging and 
promising solution. Hyper-heuristic in recent times is gaining popularity due to its 
general applicability of the same solution to solve different types of problems. Hyper-
heuristic is generally a heuristic method or framework which iteratively evaluates and 
chooses the best low-level heuristic, to solve different types of problems. In this paper 
we try to solve wireless device task offloading in mobile edge computing, which is a 
non-convex and NP-Hard problem by using a proposed novel Hyper Heuristic 
Framework using Stochastic Heuristic Selection (HHFSHS) using Contextual Multi-
Armed Bandit (CMAB) with Epsilon-Decreasing strategy, considering two key Quality 
of Service (QoS) objectives computation time and energy consumption. These multi-
objective criteria are modeled as a single-objective optimization problem to minimize 
the latency and energy consumption of wireless devices without losing the Pareto 
optimality. Finally, evaluate its performance by comparing it with other individual 
meta-heuristic algorithms. 

 
Keywords: Mobile Edge Computing; Hyper Heuristics; Meta Heuristics; Task 

Offloading; Optimization 

1 Introduction 
In the past decades, we have witnessed many revolutionary wireless mobile devices, wearables, 

and IoT sensors, all these small resource constraint devices need an innovative way of doing effective 
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computation outside their hardware resource and getting the results back faster for decision making, 
with the introduction of 5G, this can be achieved by utilizing mobile edge computing infrastructure. 
With the adoption of 5G network the expectation for a faster network is inevitable to achieve fast 
speed, low end-to-end latency, and high reliability. Large-scale Applications like High-definition 
video, virtual reality (VR), Augmented reality (AR), IoT wireless sensor-based industrial applications, 
UAV, and Autonomous Vehicles will all eventually generate a large amount of data. This not only 
puts a strain on the system but also backhaul. To provide better service to the end users for latency-
sensitive computational operations, the core network 'Users' devices are placed closer to the network's 
edge. This will lessen the burden on the server while lowering the delay in the network and processing 
as computations are done at the mobile edge server placed in proximity to the edge devices. 

 

 
Fig 1: Mobile Edge Computing Environment 

 
To address the issues of low processing capacity and restricted resources in wireless edge devices, 

the concept of Mobile edge computing (MEC) computation offloading has been presented by the 
industry. Computation offloading is the process of allocating computationally heavy jobs to a nearby 
Mobile Edge Server (MES) which has appropriate processing and computing resources. MES is then 
queried for the derived results. Fig 1 shows a typical Mobile edge computing environment where 
Wireless Devices (WD) {WD1, WD2, .. WDn} connect to the nearest MES {MES1, MES2, .. 
MESn}, all these MES are interconnected through fiber optics or high bandwidth wireless channels. 
Further, all MES have fiber optics connections with the Centralized Cloud Data Center (CCDC). WDs 
take a stochastic intelligent decision to connect to the least utilized nearby MES for task offloading 

ISSN NO : 1006-8341

PAGE NO: 280

Journal For Basic Sciences

Volume 22, Issue 12, 2022



and getting the results back either through the same MES or through the CCDC, it depends on the 
mobility of the WD. For example, if WD1 which is initially in the range of MES1 starts offloading to 
MES1 and being in mobility, it comes to the range of MES3 and retrieves the results from MES3 due 
to MES collaboration with CCDC. 

More research are carried out to intelligently offload the task to mobile edge servers using meta 
heuristics, but that does not bring in some generality to the solution space and applicability of 
algorithm to wide variety of problems, this motivates to bring in Hyper-heuristics [1] to achieve the 
generality for solving wide variety of problems from different domains. However, the major challenge 
is in generating heuristics or selecting heuristics automatically. 

 
A hyper-heuristic is an interesting methodology of selecting or generating heuristics to solve 

different hard computational search problems in an automated way using the same solution in hand. 
According to the author Burke [2] in his book, he categorized hyper-heuristics into two broad 
categories as heuristic selection and heuristic generation (refer Fig 2 – adapted from [2]), this is the 
first level in our first dimension (the nature of the search space). The second level in this dimension 
corresponds to the distinction between constructive and local search hyper-heuristics. This 
categorization deals with the nature of the low-level heuristics used in the hyper-heuristic framework. 
Construction and Perturbation are the terms used to refer these low-level heuristics classes. 

 

 
 

Fig 2: Hyper Heuristic classification based on feedback and heuristic search space 
 

 
Almost all existing hyper heuristics search contains two stages: heuristics selection and its move 

acceptance. Fig 3 (adapted from [2]) depicts the high-level element blocks and its interaction of Hyper 
heuristic using perturbative heuristic selection and Acceptance Criteria move acceptance. 
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Fig 3: Hyper Heuristic using Perturbative heuristic selection 
 
 
. 

2 Related Works  
Task computation offloading and resource allocation strategies are interesting problems to be 

solved in mobile edge computing and vehicular edge network. Several interesting research has been 
done in this field using Meta-Heuristic, Neural Networks, and Fuzzy Logic. Task Offloading can be 
thought of as completely offloading to MES, or partially offloading only memory-intensive 
processing to the MES and the remaining processing is done locally, or the entire task is locally 
computed without offloading to the MES. Most of the task which depends on external data or needs 
aggregated data from different sources are offloaded to the MES, because of its nature to download a 
lot of data from external sources and do data aggregation which is memory-intensive processing. It is 
reasonable to offload such tasks to MES completely. 

 
Mareli et al. [3] used bio inspired meta-heuristic algorithm cuckoo search to optimize task 

offloading by tweaking the switching parameter. Miao et al. [4] proposed a new intelligent 
computation offloading based MEC architecture in combination with artificial intelligence (AI) 
technology. Their methodology effectively reduces the total task delay with the increasing data and 
subtasks. Li and Wang et al. [5] solved multi-objective optimization problem by using particle swarm 
optimization (PSO) with energy constraint MES placement algorithm to arrive at the optimal solution. 
Huang et al. [6]  used whale optimization algorithm (WOA) meta heuristic to solve the multi target 
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problem targeting two criteria like task energy consumption and task processing time. Coronel et al. 
[7] used Meta-Heuristic algorithms with multiple objectives for placement optimization of wireless 
switches in Electrical Power distribution system. Zakaryia et al. [8] used Queuing network and 
evolutionary Genetic Algorithm to offload task effectively focusing on minimizing the task response 
time. Feng et al. [9] used hybrid algorithm GWO-WOA for solving task offloading problem of IOT 
devices in mobile edge computing environment while considering three optimization criteria. Khan et 
al. [10] in their paper proposed a task scheduling method based on a hybrid optimization algorithm is 
presented, which effectively schedules jobs with the least amount of waiting time. Anisetti et al. [11] 
in their paper proposed an energy efficient task offloading and transmission power allocation scheme 
that reduces completion time and energy consumption. You et al. [12] in their paper proposed a PSO 
algorithm for task offloading from a resource constrained wireless edge devices to MES considering 
energy and low latency multi objective criteria. Pham et al. [13] in their paper tried to solve resource 
allocation in wireless network using WOA. Li et al. [14] in their paper tried to fill the gap of task 
deadline constraints which other existing offloading algorithm failed to do so.  

 
Zhuang et al. [15] in their paper proposed hyper-heuristic algorithm for fog computing to achieve 

QoS requirements. Alshareef et al. [16] in their paper used multi objective hyper heuristic approach to 
solve multi objective software module clustering optimization problem by combining and controling 
three three genetic and evolutionary algorithms namely multi-objective genetic algorithm (MOGA), 
non-dominated sorting genetic algorithm (NSGAII) and strength pareto evolutionary algorithm 
(SPEA2). Huang et all [17] in their paper explored meta-heuristics energy-efficient computation 
offloading (EE-CO) approach to minimize energy consuption focusing on delay and security 
constriants. 

3 System Method  
In this paper we will discusses about the case of Wireless Devices (WDs) offloading their tasks to 

nearby MES based on their computation data size. The collection of WDs is represented as N = {1, 2, 
.., n}. Task computation time needed to finish the task is represented as TC = {tc1, tc2, ‥, tcn}, and 
task data size is represented as TS = {ts1, ts2, ‥, tsn}, where ‘i’ is a particular wireless device in the 
collection N. Each wireless device’s task is considered as the combination of TC and TS, which can 
be represented as 𝑡𝑎𝑠𝑘௜  = { 𝑡𝑐௜ , 𝑡𝑠௜ }. Network Access points or Wifi Routers is used for 
communication and data transfer between wireless devices and MES. For task computation, wireless 
device can completely do it locally or completely offload to MES or partially do locally and partially 
at edge server. This can be represented as an offloading decision set Y = {y1, y2, ‥, yn}, where yi 
ranges between [ 1, 0], both inclusive. If yi = 1, then WDi completely offload its task to MES and if yi 
= 0, then WDi does the full task computation within itself. If yi > 0 and yi < 1, then WDi offloads yi × 
100% of tasks to the MES and remaining (1 − yi) × 100% of tasks done locally. For offloading 
decision on edge server, edge server’s available processing capacity is considered, and the system 
method is a combined minimization of overall task processing time / completion time and amount of 
energy consumed for completing that task. we assert that by employing the Hyper Heuristics approach 
to identify the optimal task offloading decision to do local computing or mobile edge computing or 
combination of both and thereby latency and energy can be greatly reduced. 
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3.1 Local Computation Model 
Here we will formulate the model for task execution locally at wireless device. Let consider 

𝑡𝑑௜
௟௢௖  as the local processing time or time delay and 𝑒𝑐௜

௟௢௖ as the energy consumed for processing that 
task locally. 𝐹௜

௟௢௖  is denoted as the maximum available CPU cycles of WDi.  
 
Let 𝑓௜

௟௢௖  represent the current available CPU cycles for the computation task at that moment of the 
WDi and 𝑡𝑐௜ represent the task required computation time, then the local task processing time or time 
delay 𝑡𝑑௜

௟௢௖ to process the task locally by the WDi, is represented as:  
 

𝑡𝑑௜
௟௢௖ =

௧௖೔

௙೔
೗೚೎      (1)  

 
The energy consumption for local task processing is represented as:  
 

𝑒𝑐௜
௟௢௖ = Ϲ൫𝑓௜

௟௢௖൯
ଶ

𝑡𝑐௜       (2)  
 
where Ϲ, is the effective switched capacitance of the device based on its chip architecture. 

3.2 Edge Computation Model 
Here we will formulate the model for task execution remotely at MES in this section. 

Communication rate is considered based on the assumption that mobile devices are connected through 
the wireless channel. Let, B represent the bandwidth of the wireless channel, and let’s assume that the 
bandwidths for WDs are equally allocated for task offloading. Let, θi is the bandwidth allocated to 
wireless channel for WDi. Based on Shannon formula (𝑟௜- channel capacity in bits per sec), the WDi 
communication rate (𝑅௜) is represented as [18]:  

 

𝑅௜ = 𝑟௜θ௜ = 𝐵 log ቀ1 +
௧௣೔௖௚೔

஻ேబ
ቁ θ௜     (3)  

 
where 𝑡𝑝௜  is transmission power of WDi and 𝑐𝑔௜  is channel gain of WDi, and 𝑁଴ denotes the 
background channel noise. Now, the total task processing time delay has two parts, one is task 
transmission time and other is task processing time. 𝑡𝑟𝑎𝑛𝑠𝑇௜

௢ is the task transmission time, and it is 
calculated as:  

𝑡𝑟𝑎𝑛𝑠𝑇௜
௢ =

௧௦೔

ோ೔
      (4)  

 
Let F denotes the entire available edge server computing resources and 𝑓௜

௘ௗ௚௘
 is the CPU cycles 

allocated to the WDi to complete its task at the MES and 𝑝𝑟𝑜𝑐𝑇௜
௘ௗ௚௘

 represent the WDi task 
computation time needed at the MES and it is calculated as:  
 

𝑝𝑟𝑜𝑐𝑇௜
௘ௗ௚௘

=
௧௖೔

௙
೔
೐೏೒೐       (5)  

 
The time required for sending back the result or response from MES can be neglected because the size 
of the output of the computed data is less. The total time for the WDi to process the offloaded task 
completely using the MES is calculated as:  
 

𝑡𝑜𝑡𝑎𝑙𝑇௜
௣

= 𝑡𝑟𝑎𝑛𝑠𝑇௜
௢ + 𝑝𝑟𝑜𝑐𝑇௜

௘ௗ௚௘       (6)  
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The overall energy consumption 𝑒𝑐௜

௣ is calculated as:  
 

𝑒𝑐௜
௣

= 𝑡𝑟𝑎𝑛𝑠𝑃௜
௢𝑡𝑟𝑎𝑛𝑠𝑇௜

௢ + 𝑡𝑟𝑎𝑛𝑠𝑃௜
௘𝑝𝑟𝑜𝑐𝑇௜

௘ௗ௚௘       (7)  
 
where 𝑡𝑟𝑎𝑛𝑠𝑃௜

௢  is transmission power required to upload the data from WDi to the MES through the 
wireless channel, and 𝑡𝑟𝑎𝑛𝑠𝑃௜

௘  is the power required for the WDi to wait for the result from MES. 
 

3.3 Problem formulation 
 
While formulating this problem, we considered N wireless devices with varying task computation 

workloads and task dependencies. The decision Y is made based on TC and TS. Here we consider 
both task processing time delay and task energy consumption. There are several ways to solve multi-
objective problems, one way is to optimize the first objective function and try to optimize the second 
objective function while maintaining the first objective function value intact. The second way is to 
optimize both objective functions simultaneously. Since these two target constraints are a measure of 
different metrics, they must be normalized for the calculation to avoid biasing. 

 
So, the equation for calculating total time delay becomes: 
 

𝑇𝑇 = ∑
ቂ(ଵି௬೔)௧௢௧௔௟ ೔்

೗ା௬೔௧௢௧௔௟ ೔்
೛

ቃି்ౣ౟౤

்ౣ౗౮ ି்ౣ౟౤

௡
௜ୀଵ        (8)  

 
where 𝑇୫୧୬  is the minimum task processing time delay in the set N, and 𝑇୫ୟ୶  is the maximum task 
processing time delay in the set N.  
 
      And the equation for calculating total energy consumption becomes:  
 

𝐸𝐶 = ∑
ቂ(ଵି௬೔)௘௖೔

೗ା௬೔௘௖೔
೛

ቃିாౣ౟౤

ாౣ౗౮ ିாౣ౟౤

௡
௜ୀଵ      (9)  

 
where 𝐸୫୧୬  is the minimum task energy consumption in the set N, and 𝐸୫ୟ୶  is the maximum task 
energy consumption in the set N.  
 
 
Combining both objectives, an improved mathematical formula is arrived to minimize the impact of 
dimensions and makes the formula controllable using different decision variables. Finally, the target 
minimization objective function is formulated as:  
 

𝑍 = 𝑇𝑇 + η𝐸𝐶  

= ∑
ቂ(ଵି௬೔)௧௢௧௔௟ ೔்

೗ା௬೔௧௢௧௔௟ ೔்
೛

ቃି்ౣ౟౤

்ౣ ౗౮ି்ౣ౟౤

௡
௜ୀଵ + η ∑

ቂ(ଵି௬೔)௘௖೔
೗ା௬೔௘௖೔

೛
ቃିாౣ౟౤

ாౣ౗౮ିாౣ౟౤

௡
௜ୀଵ    (10) 

  
The coefficient η is used as weight to adjust the optimization objective function results. Here we 
consider the total time latency target as baseline with coefficient value as 1. The coefficient η of the 
total energy consumption which ranges from 0.001 to 1 is adjusted based on careful pareto optimality 
study to get the required weighted normalization for the two targets.  
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Finally, this optimization problem can be solved using a single target minimization equation given as:  

min
௬,஘೔௙

೔
೐೏೒೐

𝑍        (11) 

s.t. 0 ≤ 𝑓௜
௘ௗ௚௘

≤ 𝑦௜𝐹, ∀𝑖 ∈ 𝑁 

෍ 𝑓௜
௘ௗ௚௘

௡

௜ୀଵ
≤ 𝐹, ∀𝑖 ∈ 𝑁 

0 ≤ 𝜃௜ ≤ 𝑦௜𝐵, ∀𝑖 ∈ 𝑁 

෍ 𝜃௜

௡

௜ୀଵ
≤ 𝐵, ∀𝑖 ∈ 𝑁 

𝑦௜ ∈ [0,1], ∀𝑖 ∈ 𝑁 
 
 
The aim of the problem is to minimize the objective function Z, considering the two target constraints 
namely low energy consumption and low processing time without losing the pareto optimality. 
 

4 Problem Solutions 
 

In this research, three meta heuristics Grey Wolf Optimizer (GWO), Tabu Search (TS) and 
Cuckoo Search (CS) are modified and used in low level hyper heuristic selection in the proposed 
technique and tested, let discuss those meta heuristics overview and their modifications for using it in 
the proposed algorithm. 

4.1 Grey Wolf Optimizer 
 
Grey wolf optimizer (GWO) is one of nature inspired meta heuristic swarm intelligence algorithm. 

This algorithm is unique from other algorithms due its methodology of adopting social hierarchy and 
hunting behavior of grey wolves. Seyedali Mirjali proposed GWO [19] in 2014 and proposed multi 
objective (MOGWO) [20] in 2016. In Recent times GWO is used in many optimization research 
aspects. In fact, Xu et al [21] proposed a fusioned Cuckoo Search with the Improved GWO algorithm 
to achieve better result.  Grey wolves usually dwell in packs with some dominant social hierarchy as 
shown in Fig 4 (adapted from [19]). These wolves are represented as 4 main groups namely alpha 
wolves (α), beta wolves (β), delta wolves (δ), and omega wolves (ω). Wolves which usually lead in 
prey hunting are called alpha wolves; wolves which supports helping alpha wolves are called beta 
wolves; wolves which helps in guarding the territory boundaries and does the whistle blowing job are 
called delta wolves; and wolves which are lazy and does not actively take part in hunting but only 
interested in eating the leftover food are called omega wolves, which is usually dominated by other 
top category wolves.  
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Fig 4: Social Hierarchy of Grey Wolfs 

 
 
In GWO algorithm, the final optimized fit solution is represented as alpha, then the second less 

optimized fit solution is represented as beta and the third least optimized fit solution is represented as 
delta. All the left-over trivial solutions are represented as omega. GWO has 3 stages in the algorithm: 
encircling, hunting, or attacking, and searching. The positions of the wolves during the encircling 
stage, is updated by [19]: 

 
 𝐷ሬሬ⃗ = ห𝐶 ⋅ 𝑋⃗௣(𝑖) − 𝑋⃗(𝑖)ห       (12)  

 
where ‘i’ is the iteration index, 𝑋⃗௣  represent the position vector of prey, and 𝑋⃗  represent the 

position vector of wolves. 𝐴 and 𝐶 are coefficient vectors, calculated by the below equations:  
 

𝐴 = 2 ⋅ 𝑎⃗ ⋅ 𝑟ଵ − 𝑎⃗       (13)  
 

𝐶 = 2 ⋅ 𝑟ଶሬሬሬ⃗         (14)  
 
Here the variable 𝑎⃗  is non-linearly decreased for ¾ of the iteration and linearly decreased from 2 

to 0 for remaining iterations. This is done to support better exploration and exploitation respectively 
and variables 𝑟ଵ and 𝑟ଶሬሬሬ⃗  are random absolute vectors in range [ 0, 1].  

 
During the hunting stage, additional weight coefficient 0.01 is considered for alpha position as 

alpha wolfs are closer to the prey, this value can be tweaked based on the convergence behavior and 
final positions of the wolves are updated by equation [17]:  

 
𝐷ఈ
ሬሬሬሬሬ⃗ = ห𝐶ଵ ⋅ 𝑋ఈ

ሬሬሬሬ⃗ − 𝑋⃗ห, 𝐷ఉ
ሬሬሬሬ⃗ = ห𝐶ଶ ⋅ 𝑋ఉ

ሬሬሬሬ⃗ − 𝑋⃗ห, 𝐷ఋ
ሬሬሬሬ⃗ = ห𝐶ଷ

ሬሬሬሬ⃗ ⋅ 𝑋ఋ
ሬሬሬሬ⃗ − 𝑋⃗ห  (15)  

 
𝑋⃗ଵ = 𝑋⃗ఈ − 𝐴ଵ

ሬሬሬሬ⃗ ⋅ 𝐷ఈ
ሬሬሬሬሬ⃗ , 𝑋ଶ

ሬሬሬሬ⃗ = 𝑋ఉ
ሬሬሬሬ⃗ − 𝐴ଶ

ሬሬሬሬ⃗ ⋅ 𝐷ఉ
ሬሬሬሬ⃗ , 𝑋ଷ

ሬሬሬሬ⃗ = 𝑋ఋ
ሬሬሬሬ⃗ − 𝐴ଷ

ሬሬሬሬ⃗ ⋅ 𝐷ఋ
ሬሬሬሬ⃗    (16)  

 

𝑋⃗(𝑡 + 1) =
(௑భ
ሬሬሬሬሬሬሬ⃗ ∗଴.଴ଵ) ା௑మሬሬሬሬሬ⃗ ା௑యሬሬሬሬሬ⃗

ଷ
       (17)  

 
GWO has good exploitation and exploration ability, which helps in avoiding local minimum trap. 
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4.2 Tabu Search 
Tabu Search (TS) is one of the meta-heuristic local search algorithms specialized in optimizing the 

heuristics model parameters. Some of the local search heuristic methods have the pitfall to stuck in 
local minima. TS helps to overcome this problem by enhancing the local search exploration phase by 
prohibiting already visited solutions also known as Tabu. TS does sometimes deterministically accept 
trivial solutions to avoid local minima convergence. The steps involved in the TS algorithm are given 
below, 

 
Algorithm: 

Step 1: Start with any random best acceptable solution, say bS = S₀. 
 
Step 2: Generate neighboring random solutions N(bS) based on the current best solution bS. 
From N(bS), the solutions that are in the Tabu List are removed except for the solutions that 
fit the Aspiration Criteria. This solution will become the new N(bS). 
 

𝑏𝑆ᇱ ∈ 𝑁(𝑏𝑆) = {𝑁(𝑏𝑆) − 𝑇(𝑏𝑆)} + 𝐴(𝑏𝑆)    (18) 
 

Step 3: Choose the best solution out of 𝑁(𝑏𝑆) and label this new solution 𝑏𝑆ᇱ. If the solution 
𝑏𝑆ᇱ is better than the current best solution, update the current best solution. After, regardless 
of if 𝑏𝑆ᇱ is better than 𝑏𝑆, we update 𝑏𝑆 to be 𝑏𝑆ᇱ. 
 
Step 4: Update the Tabu List 𝑇(𝑏𝑆) by removing all moves that are expired past the Tabu 
Tenure and add the new move s’ to the Tabu List. Additionally, update the set of solutions 
that fit the Aspiration Criteria 𝐴(𝑏𝑆). 
 
Step 5: Search stops if the termination criteria is met or else it will move onto the next 
iteration. Termination Criteria is used here is max number of iterations. 
 

4.3 Cuckoo Search 
 
Cuckoo Search (CS) algorithm is one of bio-inspired meta heuristic algorithm developed based on 

reproduction behavior of cuckoo birds [14]. Potential solutions are associated with cuckoo eggs in CS. 
Cuckoos birds usually lay their eggs in other’s nests with the hope of their off springs being raised by 
other. On a random probability say 25%, when the host cuckoos discover those foreign eggs in their 
nests, some of the foreign eggs are thrown out of the nest or cuckoos will completely discard that 
entire nest. The CS algorithm consist of three basic rules as follows: 

 Eggs are laid in random nests by cuckoo bird. 

 Best nests which contain best quality eggs are selected and carried forward to next 
generation. 

 Host cuckoo will identify a foreign egg with a probability pa є [0,1] from a set of random 
nests. If foreign egg is found, the host cuckoo can either throw the foreign egg away or 
completely abandon the whole nest and build a new nest elsewhere. 
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During the iteration, based on the above three rules, the new position of cuckoo nests is updated 
by. 

 
x௝(𝑡 + 1) = 𝑥௝(𝑡) + 𝛼 ⊕ Lev 𝑦(𝜆), 𝑖 = 1,2, … , 𝑛     (19) 

 
Here the product ⊕ representative entry-wise multiplication. x௝(𝑡 + 1) denotes new solutions for 

cuckoo ‘i’, 𝑥௝(𝑡)  denotes the current solutions. The step size is controlled by α > 0, Let’s assume its 
value as 1. The levy-flight is provided by following Mantegna’s algorithm. 

 
In Mantegna’s algorithm, the step length s is calculated by  
 

   𝑠 =
௨

|௩|భ/ഁ       (20) 

 
where u and v values are arrived based on normal distributions. That is 
 

𝑢 ∼ 𝑁(0, 𝜎௨
ଶ), 𝑣 ∼ 𝑁(0, 𝜎௩

ଶ)       (21) 
 

were,  

𝜎௨ = ቄ
୻(ଵାఉ)ୱ୧୬ (గఉ/ଶ)

୻[(ଵାఉ)/ଶ]ఉଶ(ഁషభ)/మቅ
ଵ/ఉ

, 𝜎௩ = 1     (22) 

 
This distribution obeys the expected Levy’s distribution for |s| >=|s0| where s0 is the smallest step. 

Its value can be carefully chosen between 0.01 to 1. 
 

4.4 Proposed Hyper Heuristic Framework using Stochastic Heuristic 
Selection (HHFSHS) 

 
Based on the Heuristic framework depicted in Fig 3, a novel stochastic heuristic selection 

based on online learning acceptance criteria feedback is proposed which uses a couple of well-known 
meta-heuristics like GWO, CS, and TS as part of the low-level heuristic search with certain careful 
parameter tweaks to improve exploration and exploitation behaviors. The reason behind choosing 
these three meta-heuristics is based on the performance and behavior to tackle local minima traps and 
achieve optimum convergence in most of the problem space. Let’s discuss those modifications on 
meta-heuristics below. 

The GWO algorithm updates the wolve position just by averaging out the alpha, beta, and delta 
positions during each iteration using equation (17), this may lead to a local minimum trap or slow 
convergence as alpha position progress slows down due to average calculation. This is seen in the 
convergence comparison in Fig 5. To mitigate this, the equation is modified to add a fixed weight to 
the alpha wolves' position to emphasize the importance of alpha wolves leading the group. The 
encircling and attacking phases of iteration are called as exploration and exploitation phases 
respectively, instead of having the linearly decreasing value, this algorithm is modified to use a 
nonlinear function for ¾ of the max iteration and a linear function for ¼ of the max iteration to 
support exploration and exploitation stochastically. 
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The TS algorithm is used to save all prior search best positions and prevents search agents from 
searching in previously searched positions, hence enhancing performance. 

The CS algorithm updates its nest position using a fixed probability index, say 0.25, using cuckoo 
random walk and levy-flights. Walking straight for a time, then turning 90 degrees and continuing 
walking, results in high randomness, which aids in local minima avoidance and improves exploration 
capabilities.  

Using these modified meta heuristic algorithms in low level heuristic search as part of the hyper 
heuristic framework, a novel Hyper Heuristic based on perturbation low-level heuristic selection 
using Contextual Multi-Armed Bandit (CMAB) Epsilon-Decreasing strategy is formulated with move 
acceptance criteria formulated as depicted in equation (23), where 0 represent criteria not satisfied or 
loss and 1 represent criteria satisfied or high profit. Epsilon-Decreasing strategy is used to favor 

exploration initially and gradually favor exploitation later by starting with higher ϵ value and 
decrease over time. Consideration is given such that the rate of decrease shouldn’t be too quick.  

During the algorithm iteration, last best convergence is compared with n last convergences, if there is 
improvement in the best convergence value, then the chosen low-level heuristic from heuristic Bag is 
continued for further iterations, in case there is no improvement in the best convergence value, then a 
stochastic heuristic selection is picked using CMAB with Epsilon-Decreasing strategy with an 
additional penalization on iteration count for which there is no improvement and continued for further 
iteration. This process is repeated till the end of the iteration. 

 Acceptance Criteria (AC) = {0,1}, s.t, 𝐶௟ − 𝐶௟ି୬ < 𝐶௧    (23) 

     where,  𝐶௟ is last best convergence,  
𝐶௟ି௡ is last ‘n’ convergences,  
𝐶௧ is convergence tolerance (1e-5) 

 

Based on the above hyper heuristic framework and formulation (refer Fig 3), a novel Hyper Heuristic 
Framework using Stochastic Heuristic Selection (HHFSHS) is proposed as below algorithm 

Algorithm: Pseudocode of proposed HHFSHS algorithm 
        Initialize the Heuristic Bag HBi (i=1, 2,..m) which contain couple of local search heuristics 

(GWO, WOA, CS,TS) 
Initialize the search space population SPi (i = 1, 2, ..., n)  
Max_Iter = 500 
Convergence Iteration Count (Ci) = 5 
Convergence Tolerance (Ct) = 1e-5 
Initialize the Acceptance Criteria (AC) using equation (23) 
 
Hc = Randomly pick 1 Heuristic from HBi; using CMAB Epsilon-Decreasing strategy 
 
Calculate the fitness value for all search agents in the population SPi 
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Select Xα (Best Solution) from solutions according to the fitness values  
ConvergenceGraph.Add(Xα); 
 
t=1 
while t < Max_Iter do  

 
SPi = Update the search agents positions based on Current Heuristic (Hc) 
Calculate the fitness value of each search agent in the population SPi 
Select Xα (Best Solution) from solutions according to the fitness values  
 
if (AC is not met or no significant convergence) 
 Hc = Randomly pick 1 Heuristic from HBi; using CMAB Epsilon-Decreasing  
                  strategy 
 t = t- Ci; //penalize the iteration 
 Remove ‘Ci’ number of recent no significance convergence solutions from  

ConvergenceGraph // Discard no significant solution  
else   

ConvergenceGraph.Add(Xα); 
end 
t = t + 1  

end while  
Return Xα 

 

5 Experimental Analysis and Results 

5.1 Simulation Setup 
Bio Inspired Heuristic algorithms like PSOGWO, EGWO, Augmented GWOCS (AGWOCS), 

GWO, BAT, Improved GWO (IGWO), WOA, PSO, GWOWOA were compared with HHFSHS and 
investigated in MATLAB version R2021b. The test environment was Dell laptop with the following 
specifications: RAM of 10 GB, CPU is Intel® Core™ i5-2540M CPU @ 2.60 GHz and 64-bit 
windows 10 Pro operating system. 

 

5.2 Test Functions 
The unimodal and multi model benchmark test functions used to validate the performance of each 

Optimization algorithm are tabulated in Table 1 and Table 2.  
 

Table 1: Uni-model Test Functions 
 

S.No Function Dim Range 𝒇𝒎𝒊𝒏 
1 

𝑓ଵ(𝑥) = ෍  

௡

௔ିଵ

𝑥ଵ
ଶ 

30 [-100,100] 0 

2 
𝐹ଶ(𝑥) = ෍  

௡

௜ୀଵ

|𝑥௜| + ෑ  

௡

௜ୀଵ

|𝑥௜| 
30 [-10,10] 0 
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3 

𝐹ଷ(𝑥) = ෍  

௡

௜ୀଵ

ቌ෍  

௜

௝ୀଵ

𝑥௜
ଶቍ

ଶ

 

30 [-100,100] 0 

4 𝐹ସ(𝑥) = 𝑚𝑎𝑥
௜

 {|𝑥௜|, 1 ≤ 𝑖 ≤ 𝑛} 30 [-100,100] 0 

5 
𝐹ହ(𝑥) = ෍  

௡

௜ୀଵ

[100(𝑥௜ାଵ − 𝑥௜
ଶ)ଶ + (𝑥௜ − 1)ଶ] 

30 [-30,30] 0 

6 
𝐹଺(𝑥) = ෍  

௡

௜ୀଵ

(𝑥௜ + 0.5)ଶ 
30 [-100,100] 0 

7 
𝐹଻(𝑥) = ෍  

௡

௜ୀଵ

𝑖𝑥௜
ସ + random [0,1) 

30 [-1.28,1.28] 0 

 
 
 

Table 2: Multi-model Test Functions 
 

S.No Function Dim Range 𝒇𝒎𝒊𝒏 
1 

𝐹 (𝑥) = ෍  

௡

௜ୀଵ

− 𝑥௜sin ቀඥ|𝑥௜|ቁ 
30 [-

500,500] 
-

418.9829 
x Dim 

2 
𝐹ଽ(𝑥) = − ෍  

௡

௜ୀଵ

[𝑥௜
ଶ − 10cos (2𝜋𝑥௜) + 10] 

30 [-
5.12,5.12] 

0 

3 

𝐹ଵ଴(𝑥) = −20exp ൮−0.2ඩ
1

𝑛
෍  

௡

௜ୀଵ

𝑥௜
ଶ൲ − exp ቌ

1

𝑛
෍  

௡

௜ୀଵ

cos (2𝜋𝑥௜)ቍ + 20 + 𝑒 

30 [-32,32] 0 

4 
𝐹ଵଵ(𝑥) =

1

4000
෍  

௡

௜ୀଵ

𝑥௜
ଶ − ෑ  

௡

௜ୀଵ

cos ൬
𝑥௜

√𝑖
൰ + 1 

30 [-
600,600] 

0 

5 
𝐹ଵଶ(𝑥) =

𝜋

𝑛
൝10sin (𝜋𝑦ଵ) + ෍  

௡

௜ୀଵ

(𝑥௜ − 1)ଶ[1 + sinଶ (3𝜋𝑥௜ + 1)] + (𝑥௡ − 1)ଶ[1 + sinଶ (2𝜋𝑥௡)]ൡ

+ + 𝑦௜ = 1 +
𝑥௜ + 1

4
𝑢(𝑥௜ , 𝑎, 𝑘, 𝑚) = ቐ

(𝑥௜ − 𝑎)௠𝑥௜

𝑥௜

(−𝑥௜ − 𝑎)௠𝑥௜

 

30 [-50,50] 0 

6 
𝐹ଵଷ(𝑥) = 0.1 ൝sinଶ (3𝜋𝑥ଵ) + ෍  

௡

௜ୀଵ

(𝑥௜ − 1)ଶ[1 + sinଶ (2𝜋𝑥௡)]ൡ + ෍  

௡

௜ୀଵ

𝑢(𝑥௜ , 5,100,4) 
30 [-50,50] 0 

7 

𝐹ଵସ(𝑥) = ቌ
1

500
+ ෍  

ଶହ

௝ୀଵ

1

𝑗 + ∑  ଶ
௜ୀଵ ൫𝑥௜ − 𝑎௜௝൯

଺ቍ

ିଵ

 

2 [-65,65] 1 

8 
𝐹ଵହ(𝑥) = ෍  

ଵଵ

௜ୀଵ

ቈ𝑎௜ −
𝑥௜(𝑏௜

ଶ + 𝑏௜𝑥ଶ)

𝑏௜
ଶ + 𝑏௜𝑥ଷ + 𝑥ସ

቉

ଶ

 
4 [-5,5] 0.00030 

9 
𝐹ଵ଺(𝑥) = 4𝑥ଵ

ଶ − 2.1𝑥ଵ
ସ +

1

3
𝑥ଵ

଺ + 𝑥ଵ𝑥ଶ − 4𝑥ଶ
ଶ + 4𝑥ଶ

ସ 
2 [-5,5] -1.0316 

 
 
These optimization test functions complexity quality is defined by the number of peaks 

encountered in the function landscape. These peaks can negatively impact the optimization process 
when the optimization algorithm gets stuck in between the peaks. Couple of test function results are 
shown below for discussion on performance of the proposed algorithm. 

 

ISSN NO : 1006-8341

PAGE NO: 292

Journal For Basic Sciences

Volume 22, Issue 12, 2022



 
 
 

 

ISSN NO : 1006-8341

PAGE NO: 293

Journal For Basic Sciences

Volume 22, Issue 12, 2022



 
 
 

 

ISSN NO : 1006-8341

PAGE NO: 294

Journal For Basic Sciences

Volume 22, Issue 12, 2022



 
 

 
 

ISSN NO : 1006-8341

PAGE NO: 295

Journal For Basic Sciences

Volume 22, Issue 12, 2022



 
 

 
 

ISSN NO : 1006-8341

PAGE NO: 296

Journal For Basic Sciences

Volume 22, Issue 12, 2022



 
 

 
 
 

Fig 5: HHFSHS algorithm Convergence comparison with other Meta Heuristics 
 

5.3 Results and Discussion 
 
Performance evaluation scenarios is setup considering couple of MES in the wireless access area 

and couple of WDs (N=30) are distributed around the MES coverage region. Each WD, with its own 
computation task, task’s data size and task’s required CPU cycles are randomly generated, 
specifically tsi ∼ N (0,20) MB and tci ∼ N (500, 100) cycles/bit. The total available CPU cycles of the 
mobile edge servers is F = 30 GHz, and the allocated CPU cycles of the WDi is set to {0.5,0.6, …1.0} 
GHz randomly. The transmission power 𝑡𝑟𝑎𝑛𝑠𝑃௜

௢ is set as 100 mW, and the power required to wait 
for the result 𝑡𝑟𝑎𝑛𝑠𝑃௜

௘  is set as 10 mW. With these setting, simulation experiment is done to evaluate 
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the proposed algorithm. The aim of the proposed algorithm is to get faster and better convergence and 
thereby reducing the overall processing time and energy consumption in offloading tasks. As the 
multi-objective problem (MOP) is normalized and devised as a single objective minimization 
problem, we will consider the performance from the perspectives of convergence and stability. Also, 
couple of standard meta heuristic methods also included as comparisons. In our experiment nine other 
meta heuristics are evaluated and compared with HHFSHH technique with 3 low level heuristics 
GWO, CS, TS tweaked and used in heuristic bag of our proposed heuristic framework. There is no 
restriction on choice of low-level heuristics for using in this framework. Some of the key parameters 
chosen for evaluation are  

 Optimization target function Z. Algorithm is effective if it can arrive at the lowest 
minimum value of Z function.  

 Overall task processing time. Computation task offloading in mobile edge environment is 
delay sensitive and offloading decisions should be taken quickly, otherwise it will fail in 
its purpose.  

 Overall task energy consumption, as wireless devices typically IoT devices have less 
power resource, so it must be effectively used. 

 Stability of results in multiple iterations with the same inputs. Meta Heuristic algorithms 
have uncertainty due to the facts of its techniques to arrive at the global minimum, which 
sometimes stuck at the local optima. The results so obtained is also affected by this kind 
of uncertainty. However, these uncertainty in the results should be minimized as low as 
possible. The algorithm result may vary for each iteration with same input, as the 
stochastic selection of low-level heuristic is based on the CMAB Epsilon-Decreasing 
strategy and move acceptance using acceptance criteria evaluation 

 Finally, the convergence curves of different heuristics methodology are investigated. The 
values of the Z function obtained considering four different characteristics of applications 
like Argument Reality, HealthCare, Compute Intensive and Infotainment, with 3 different 
workload distributions.  

 
From the result (refer Fig 5), specifically on the figures 5(a), 5(b), 5(c) and 5(d), it is evident that 

none of the heuristic converged properly to global minima, but the proposed HHFSHS heuristic has 
managed to avoid local minima and converged faster to global minima with lesser processing time. It 
also seen in most of the multi-model test functions the proposed algorithm HHFSHS has converged 
well compared to other heuristics due to the fact the hyper heuristic scholastically selects the lower-
level search heuristic according to the CMAB Epsilon-Decreasing strategy and move acceptance 
using acceptance criteria evaluation. HHFSHS as performed well in terms of convergence in uncertain 
problem space due to its adaptable low level heuristic selection dynamically based on the CMAB 
Epsilon-Decreasing strategy. AGWOCS a hybrid meta heuristic algorithm relatively performed well 
close to the proposed algorithm HHFSHS and performed well than IGWO and WOA as it overcomes 
the disadvantage of GWO local minima trap behavior with the advantage of CS to improve global 
search and avoid local minima. It also can be derived from result that the lowest function values of the 
different heuristics are in the order HHFSHS < AGWOCS < IGWO < WOA. 
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Fig 6: Result Comparison 

 
Based on the simulation result (refer Fig 6), it is evidence that the completion time of offloading 

task increases with the size of the data increases and energy consumption increases with the size of 
the data increases, as more data need to be transferred from wireless device to edge server and get the 
processed data back which obviously increase the waiting time thereby consuming more energy in the 
wireless device. Our method HHFSHS is the suboptimal completion time and is suboptimal in energy 
consumption when the wireless device count is 30. Other algorithms like AGWOCS and IGWO and 
WOA relatively performed well when compared to HHFSHS, while other heuristics like PSO and 
BAT algorithms has not performed well so not considered for comparison here. From the result it is 
evident that the task processing completion time and energy consumption is less for HHFSHS, due to 
its faster convergence to find the optimal solution in problem space compared to other Heuristics.  

 

 
 

Fig 7: Performance of HHFSHS algorithm with relative percentage tasks 
 

Experiment is done considering four different characteristics of applications like Argument 
Reality, HealthCare, Compute Intensive and Infotainment, with 3 different workload distribution i) 
80% task offloaded to edge and 20% task in local computation; ii) 50% task offloaded to edge and 
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50% in local computation; and finally, iii) 20% task offloaded to edge and 80% task in local 
computation. Results based on this setup is shown in Fig 7. It is very clear that as more percentage of 
tasks are computed locally, it takes less processing time as there is no involvement of data transfer in 
the network to MES and no wait time. It also very clear that as more percentage of tasks are computed 
locally, it takes more energy, and it takes less energy when it offloads major percentage of task to 
edge server and get the job done. 

 
Table 3: Statistical Analysis on Latency and Energy Consumption 

 
 Latency(s) Energy Consumption(mJ) 
Method Mean SD Stand. Err. 

of Mean 
(SEM) 

Mean SD Stand. Err. 
of Mean 
(SEM) 

HHFSHS 0.386 0.392 0.131 417.629 368.285 122.761 
AGWOCS 0.431 0.414 0.138 476.381 401.383 133.794 
IGWO 0.488 0.446 0.138 576.840 468.111 156.037 
WOA 0.584 0.522 0.174 692.115 543.136 181.045 

 
 

 
Based on Statistical Analysis (ref Table 3), it is evidence that proposed HHFSHS has low latency 

and energy consumption compared other meta-heuristics. Standard Error of Mean (SEM) is less for 
HHFSHS compared to other methods, which means it has smoother and consistent behavior in task 
offloading for different population samples.  All these experimental result analyses provide evidence 
that hyper heuristic-based technique has overcome the disadvantage of individual heuristic by 
adaptively switching to better lower-level heuristic and adapting generically for different problem 
domains. By having a better convergence, the proposed HHFSHS algorithm able to performance 
better with reduced energy consumption and faster processing compared to other individual meta 
heuristics algorithms. 

6 Conclusion and Future Work 
In this work, we analyzed a Hyper Heuristic Framework using Stochastic Heuristic Selection 

(HHFSHS) for computation task offloading model with the goal to minimize the latency and energy 
consumption optimization in MEC. Then, the formulated model is normalized to aid in improving the 
model even for multi dimensions. The goal of the formulated model is to arrive at the minimum value. 
The proposed HHFSHS algorithm has been applied to solve the optimization problem. The 
experiment shows better results of HHFSHS approach compared to other heuristics algorithms. 
However, the algorithm proposed still can have better feedback for selection of low-level heuristics. 
Since different lower-level heuristic are selected stochastically using CMAB Epsilon-Decreasing 
strategy, the results may vary based on the Epsilon value selection, Epsilon decreasing rate   and 
acceptance criteria resulting in slightly varying result for each run. 

 
Future work will be based on the proposed algorithm going to experiment with other Heuristic 

local search algorithms with online feedback mechanism using Deep Reinforcement Learning (DRL) 
and evaluate in Vehicular Edge Computing consider mobility as an additional parameter, since 
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mobility is one of the key features affecting the task offloading and resource allocation in Vehicular 
Edge Network. 
 
Abbreviations 
MEC: Mobile Edge Computing; MES: Mobile Edge Server; WD: Wireless Device; DRL: Deep 
Reinforcement Learning; QoS: Quality of Service; AR: Augment Reality; VR: Virtual Reality; GWO: 
Grey Wolf Optimizer; CS: Cuckoo Search; TS: Tabu Search; WOA: Whale Optimization Algorithm; 
AGWOCS: Augmented Whale Optimization Cuckoo Search; IGWO: Improved Grey Wolf 
Optimizer; AC: Acceptance Criteria; HHFSHS: Hyper Heuristic Framework using Stochastic 
Heuristic Selection; CMAB: Contextual Multi-Armed Bandit. 
 
Declarations 
 
Consent for Publication 
No individual human details, images or videos are used during the current study. 
 
Availability of Data and Material 
Data sharing not applicable to this article as no datasets were generated or analyzed during the current 
study. 
 
Competing Interests 
The authors declare that they have no competing interests. 
 
Funding  
Not applicable 
 
Authors’ contributions  
Conceptualization: B. Vijayaram; Formal Analysis: B. Vijayaram; Methodology: B. Vijayaram; 
Investigation: V. Vasudevan; Supervision: V. Vasudevan 
 
Acknowledgements  
The authors appreciate the support from guide and professors at Kalasalingam Academy of Research 
and Education, Kalasalingam University, Krishnan Koil, TN, India. 
 
Authors’ Information 
 
1Mr. B. Vijayaram – Correspondence Author (Primary Author) is a Research Scholar in Kalasalingam 
Academy of Research and Education, Krishnan koil, Tamilnadu, India. Has more than 15 years of 
product-based industry experience in security, industrial automation, and medical radiology domain.  
 
2Sr. Prof Dr V. Vasudevan – Secondary Author is working as Registrar in Kalasalingam Academy of 
Research and Education, Krishnan koil, Tamilnadu, India. Has a Maths PhD, headed MCA dept of 
Kalasalingam University from 1997 to 2003. Then headed the IT dept for over ten years. During the 
same period, was the chief superintend of university exams for 6 years, Dean hostels for four years, 
Dean admissions & dean placements for three years from 2011 to 2014. Then currently working as a 
Registrar from 2013. So, for 25 students completed PhD under my guidance and has the credit 67 
international publications. I have 25 years of experience in teaching and research experience. 
 
 

ISSN NO : 1006-8341

PAGE NO: 301

Journal For Basic Sciences

Volume 22, Issue 12, 2022



 

References 

 
[

1]  
E. Burke, G. Kendall, J. Newall, E. Hart, P. Ross and S. Schulenburg, "Hyper-Heuristics: An 

Emerging Direction in Modern Search Technology," in Handbook of Metaheuristics, F. Glover 
and G. A. Kochenberger, Eds., Boston, MA: Springer US, 2003, p. 457–474. 

[
2]  

E. Burke, M. R. Hyde, G. Kendall, G. Ochoa and E. Özcan, "A classification of hyper-
heuristic approaches," 2010, pp. 449-468. 

[
3]  

M. Mareli and B. Twala, "An adaptive Cuckoo search algorithm for optimisation," Applied 
Computing and Informatics, vol. 14, pp. 107-115, 2018.  

[
4]  

Y. Miao, G. Wu, M. Li, A. Ghoneim, M. Al-Rakhami and M. S. Hossain, "Intelligent task 
prediction and computation offloading based on mobile-edge cloud computing," Future 
Generation Computer Systems, vol. 102, pp. 925-931, 2020.  

[
5]  

Y. Li and S. Wang, "An Energy-Aware Edge Server Placement Algorithm in Mobile Edge 
Computing," San Francisco, CA, USA, 2018.  

[
6]  

M. Huang, Q. Zhai, Y. Chen, S. Feng and F. Shu, "Multi-Objective Whale Optimization 
Algorithm for Computation Offloading Optimization in Mobile Edge Computing," Sensors, vol. 
21, 2021.  

[
7]  

E. Coronel, B. BarÃ¡n and P. Gardel, "Optimal Placement of Remote Controlled Switches in 
Electric Power Distribution Systems with a Meta-heuristic Approach," IEEE Latin America 
Transactions, vol. 20, no. 4, p. 590–598, 2022.  

[
8]  

S. A. Zakaryia, S. A. Ahmed and M. K. Hussein, "Evolutionary offloading in an edge 
environment," Egyptian Informatics Journal, vol. 22, pp. 257-267, 2021.  

[
9]  

S. Feng, Y. Chen, Q. Zhai, M. Huang and F. Shu, "Optimizing computation offloading 
strategy in mobile edge computing based on swarm intelligence algorithms," EURASIP Journal 
on Advances in Signal Processing, vol. 2021, p. 36, 2021.  

[
10]  

M. S. A. Khan and R. Santhosh, "Task scheduling in cloud computing using hybrid 
optimization algorithm," Soft Computing, 2021.  

[
11]  

M. Anisetti, X. Gu, L. Jin, N. Zhao and G. Zhang, "Energy-Efficient Computation Offloading 
and Transmit Power Allocation Scheme for Mobile Edge Computing," Mobile Information 
Systems, vol. 2019, p. 3613250, 2019.  

[
12]  

Q. You and B. Tang, "Efficient task offloading using particle swarm optimization algorithm 
in edge computing for industrial internet of things," Journal of Cloud Computing, vol. 10, p. 41, 
2021.  

[
13]  

Q.-V. Pham, S. Mirjalili, N. Kumar, M. Alazab and W.-J. Hwang, "Whale Optimization 
Algorithm With Applications to Resource Allocation in Wireless Networks," IEEE Transactions 
on Vehicular Technology, vol. 69, pp. 4285-4297, 2020.  

[
14]  

Z. Li, V. Chang, J. Ge, L. Pan, H. Hu and B. Huang, "Energy-aware task offloading with 
deadline constraint in mobile edge computing," EURASIP Journal on Wireless Communications 
and Networking, vol. 2021, p. 56, 2021.  

[
15]  

Y. Zhuang and H. Zhou, "A Hyper-Heuristic Resource Allocation Algorithm for Fog 
Computing," Proceedings of the 2020 the 4th International Conference on Innovation in 

ISSN NO : 1006-8341

PAGE NO: 302

Journal For Basic Sciences

Volume 22, Issue 12, 2022



Artificial Intelligence, 2020.  

[
16]  

H. Alshareef and M. Maashi, "Application of Multi-Objective Hyper-Heuristics to Solve the 
Multi-Objective Software Module Clustering Problem," Applied Sciences, vol. 12, 2022.  

[
17]  

X. Huang, Y. Yang and X. Wu, "A Meta-Heuristic Computation Offloading Strategy for IoT 
Applications in an Edge-Cloud Framework," in Proceedings of the 2019 3rd International 
Symposium on Computer Science and Intelligent Control, New York, NY, USA, 2019.  

[
18]  

X. Deng, Z. Sun, D. Li, J. Luo and S. Wan, "User-Centric Computation Offloading for Edge 
Computing," IEEE Internet of Things Journal, vol. 8, pp. 12559-12568, 2021.  

[
19]  

S. M. Mirjalili, S. M. Mirjalili and A. Lewis, "Grey Wolf Optimizer," Adv. Eng. Softw., vol. 
69, pp. 46-61, 2014.  

[
20]  

S. Mirjalili, S. Saremi, S. M. Mirjalili and L. d. S. Coelho, "Multi-objective grey wolf 
optimizer," Expert Systems With Applications, vol. 47, pp. 106-119, 2016.  

[
21]  

H. Xu, X. Liu and J. Su, "An improved grey wolf optimizer algorithm integrated with 
Cuckoo Search," in 2017 9th IEEE International Conference on Intelligent Data Acquisition and 
Advanced Computing Systems: Technology and Applications (IDAACS), 2017.  

 
 

 

ISSN NO : 1006-8341

PAGE NO: 303

Journal For Basic Sciences

Volume 22, Issue 12, 2022


