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Abstract— Back-propagation training of artificial neural 

networks is a computationally intensive machine learning 

procedure. The neural networks can be trained to calculate the 

error function with regard to all of the weights using the back 

propagation algorithm. To increase productivity and save time, 

parallel programming is done using the Open MP architecture. 

It is used to generate neural networks that are more effective. 

This method runs the algorithm concurrently. This study 

provides a comparative analysis of the execution time of serial 

code and parallel  code of the back propagation algorithm. 

Keywords—back propagation algorithm, OpenMP, Neural 

Network, parallel 

I. INTRODUCTION 

Machine learning is a subset of artificial intelligence that 
uses complex algorithms to teach computers how to learn 
from experience and make decisions. It allows computers the 
possibility to learn without explicit programming. There are 
various applications of machine    learning in artificial 
intelligence. Neural information processing, marketing and 
the social sciences, bioinformatics, classifying DNA 
sequences, and robotics, etc. are some of the specific 
applications. 

Inspired by the structure and function of the brain, 
artificial neural networks are a subfield of AI. An artificial 
neural network (ANN) is a type of computer network inspired 
by the biological neural networks that shape the human brain. 
Artificial neural networks, like the neurons in a biological 
brain, consist of nodes that are connected to one another across 
several levels of the network. These nerve cells are called 
nodes. The neurons may talk to one another thanks to the 
connections between them. A neuron's choice is sent to its 
neighbours. The output of a node is referred to as its activation 
or node value, and the weight of a link is proportional to the 
strength of the connection it makes. 

    Backpropagation is a machine learning technique that 
finds the value that minimises the loss function by computing 
the gradient of the loss function. Chain rule calculus is used to 
determine the gradient as it travels through the layers of a 
neural network. Small steps in the direction of the gradient get 
us closer and closer to the minimum value, which we may 
reach via gradient descent. The gradient of a loss function 
relative to each weight in the network is calculated in this way. 

The optimization technique modifies the weights based on 
the gradient in order to minimise the loss function. The 
gradient of the loss function must be calculated in back 
propagation for each input value in order to     determine the 
intended output.  

 A method for creating multi-threaded applications is 
called open MP. It offers a set of compiler pragmas, directives, 
function calls, and environment variables that are platform 
neutral so that parallelism can be used. The required number 
of threads are created by the master thread. To increase the 
back propagation algorithm's efficiency while using the 
threads that are available, we use Open MP. Additionally, as 
the number of threads increases, the software becomes faster. 
In back propagation, parallelism is possible through node 
parallelism. Each node in this case is examined to update the 
weight. 

II. RELATED WORK 

A number of papers on multiprocessing and ANNs methods 

have been published, demonstrating the usefulness of parallel 

architectures. In [4], a distributed memory-multiprocessor 

system is used to model a fully connected multi-layer neural 

network using a back-propagation technique. The model is 

divided into subnetworks, and each subnetwork is mapped to 

a different processor. In [2], two back-propagation using 

OpenMP implementations are examined; one splits the 

hidden layers among processors, while the other divides the 

inputs while keeping a full copy of the network on each CPU. 

Another GPU-based solution is given in [1], where ANN 

training is modelled as a matrix multiplication. 

In [2], we see a partitioning technique for multilayer networks 

that employ backpropagation. In order to speed up the 

learning process, the partitioned network is mapped into a set 

of workstations. 

This CUDA version of an image processing and pattern 

recognition method uses the NVIDIA CUDA Basic Linear 

Algebra Subroutines (CUBLAS) to establish and solve the 

network matrix for the training stage, resulting in a speedup 

of about 15 times compared to CPU implementations. There 

is a description of the SpiNNaker MPCS in [9]. It is 

characterized by highly interconnected processing nodes and 

tremendous parallelism in data processing. The goal is to get 

the same kind of computational results as a neural network, 

and to be able to model brain circuits with 109 neurons. 

The authors demonstrate that a biological neural network of 

the same size would function at the same pace. 

In [8], a GPU-based implementation of a zero-order Takagi-

Sugeno-Kang (TSK)-type Fuzzy Neural Network (FNN) 

training method is devised. To accelerate ANN training, a 

parallel implementation of a Spiking Neuronal Network is 

presented in [14] by means of the CUDA technology. It was 

in [23] that the neural network model known as Locally 

connected Neural Pyramid (LCNP) was first proposed. Using 
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NVIDIA CUDA, LCNP is tailored for high-throughput, 

large-scale object identification. 

III. ARCHITECTURE 

The architecture for the proposed study is as follows: 

1. Input the dataset required for the execution of 
back propagation algorithm. The BP algorithm is 
serially computed, meaning that computer code 
is generated and executed in a serial fashion. 

2. Output in the form of changing the weights 
produces  the desired outcome by altering the 
neural network's weights. Additional strategies 
include profiling the code using a flat profile and 
a call graph, among others. 

3. It is being done to optimize the code from o2 to 
o4 levels and to parallelize the code using Open 
MP. Benchmarking is carried out, which involves 
evaluating serial and parallel code on various 
system architectures. 

4. It is done to assess how well the system performs 
in terms of CPU usage, memory usage, and I/O 
communication. 

 

IV. IMPLEMENTATION 

 
This Backpropagation method has been trained using data 

from the fashion MNIST dataset. The data is sampled at 
various sizes (24MB, 96MB, 250MB, 500MB, 750MB and 
1GB). Different picture pixels represent the properties of the 
dataset. Make use of the Backpropagation algorithm on this 
data collection. A new estimate can be calculated by revising 

the weights. Finally, we determine how long it takes to run 
serial code, how much memory is required, and how long it 
takes to send and receive data via I/O. In the wake of this 
process, we profile the code and attempt to enhance it. After 
that, we parallelize the code using Open MP and compare the 
execution time, memory footprint, and I/O traffic to that of the 
original serial code. In the end, we benchmark the serial and 
parallel programmes on Intel 64-bit and Intel Xeon 
processors. 

V. RESULTS 

 

  

 

 
Fig 1. A Simple Artificial Neural Network 

 

 

Table II. Memory (in bytes) used differently by serial vs 

parallel programs (Intel 64-bit processor) 

 

 
Fig 3. Graph showing the relative CPU time (in 

seconds) spent on a 1GB dataset while using serial 

versus parallel code. 
 

Fig 2. Basic architectural diagram 

Table III. Memory (in bytes) used differently by serial vs 

parallel programs (Intel Xe-on processor) 
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As we can see in the graphs and the tables presented above 

parallelization of back propagation algorithm results in lower 

CPU time. The Intel i5 CPU has significant lower memory 

usage too. 
 

VI. CONCLUSION 

 

Several machine learning algorithms were analysed. The 

most productive algorithm was the back propagation one. 

This algorithm's serial code was applied to a variety of 

datasets, and the results were various lengths and running 

on a 64-bit Intel CPU. In this section, we discuss the 

results of our performance analysis with regards to central 

processing unit (CPU) time, memory consumption, and 

I/O communication. Following that, code optimization 

and profiling were performed. Then, for each dataset, we 

run parallel code written in OpenMP and assess its 

performance based on the aforementioned criteria. 

We then run benchmarks on an Intel Xeon CPU to 

compare the two programmes. The execution time, 

memory usage, and I/O communications of a serial 

programme are all larger than those of a parallel 

programme. Moreover, these variables diminish as the 

number of threads grows. Furthermore, unlike the Intel 

64-bit CPU, the Intel Xeon enables for the seamless 

execution of serial as well as parallel code. 
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Fig 4. Memory (in bytes) use on a 1 GB dataset, 

plotted as a comparison between serial and parallel 

programs. 
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