

Parallelization of Error Back-Propagation Algorithm

in Neural Networks

Mallegowda M.

Department of Computer Science

(Assistant Professor)

Ramaiah Institute of Technology

Bengaluru,Karnataka

mallegowdam@msrit.edu

Kushagra Gupta

Department of Computer Science

(Student)

Ramaiah Institute of Technology

Bengaluru,Karnataka

kushagra2001@gmail.com

Anushka K

Department of Computer Science

(Student)

Ramaiah Institute of Technology

Bengaluru,Karnataka

anushkakanagula@gmail.com

Abstract— Back-propagation training of artificial neural

networks is a computationally intensive machine learning

procedure. The neural networks can be trained to calculate the

error function with regard to all of the weights using the back

propagation algorithm. To increase productivity and save time,

parallel programming is done using the Open MP architecture.

It is used to generate neural networks that are more effective.

This method runs the algorithm concurrently. This study

provides a comparative analysis of the execution time of serial

code and parallel code of the back propagation algorithm.

Keywords—back propagation algorithm, OpenMP, Neural

Network, parallel

I. INTRODUCTION

Machine learning is a subset of artificial intelligence that
uses complex algorithms to teach computers how to learn
from experience and make decisions. It allows computers the
possibility to learn without explicit programming. There are
various applications of machine learning in artificial
intelligence. Neural information processing, marketing and
the social sciences, bioinformatics, classifying DNA
sequences, and robotics, etc. are some of the specific
applications.

Inspired by the structure and function of the brain,
artificial neural networks are a subfield of AI. An artificial
neural network (ANN) is a type of computer network inspired
by the biological neural networks that shape the human brain.
Artificial neural networks, like the neurons in a biological
brain, consist of nodes that are connected to one another across
several levels of the network. These nerve cells are called
nodes. The neurons may talk to one another thanks to the
connections between them. A neuron's choice is sent to its
neighbours. The output of a node is referred to as its activation
or node value, and the weight of a link is proportional to the
strength of the connection it makes.

 Backpropagation is a machine learning technique that
finds the value that minimises the loss function by computing
the gradient of the loss function. Chain rule calculus is used to
determine the gradient as it travels through the layers of a
neural network. Small steps in the direction of the gradient get
us closer and closer to the minimum value, which we may
reach via gradient descent. The gradient of a loss function
relative to each weight in the network is calculated in this way.

The optimization technique modifies the weights based on
the gradient in order to minimise the loss function. The
gradient of the loss function must be calculated in back
propagation for each input value in order to determine the
intended output.

 A method for creating multi-threaded applications is
called open MP. It offers a set of compiler pragmas, directives,
function calls, and environment variables that are platform
neutral so that parallelism can be used. The required number
of threads are created by the master thread. To increase the
back propagation algorithm's efficiency while using the
threads that are available, we use Open MP. Additionally, as
the number of threads increases, the software becomes faster.
In back propagation, parallelism is possible through node
parallelism. Each node in this case is examined to update the
weight.

II. RELATED WORK

A number of papers on multiprocessing and ANNs methods

have been published, demonstrating the usefulness of parallel

architectures. In [4], a distributed memory-multiprocessor

system is used to model a fully connected multi-layer neural

network using a back-propagation technique. The model is

divided into subnetworks, and each subnetwork is mapped to

a different processor. In [2], two back-propagation using

OpenMP implementations are examined; one splits the

hidden layers among processors, while the other divides the

inputs while keeping a full copy of the network on each CPU.

Another GPU-based solution is given in [1], where ANN

training is modelled as a matrix multiplication.

In [2], we see a partitioning technique for multilayer networks

that employ backpropagation. In order to speed up the

learning process, the partitioned network is mapped into a set

of workstations.

This CUDA version of an image processing and pattern

recognition method uses the NVIDIA CUDA Basic Linear

Algebra Subroutines (CUBLAS) to establish and solve the

network matrix for the training stage, resulting in a speedup

of about 15 times compared to CPU implementations. There

is a description of the SpiNNaker MPCS in [9]. It is

characterized by highly interconnected processing nodes and

tremendous parallelism in data processing. The goal is to get

the same kind of computational results as a neural network,

and to be able to model brain circuits with 109 neurons.

The authors demonstrate that a biological neural network of

the same size would function at the same pace.

In [8], a GPU-based implementation of a zero-order Takagi-

Sugeno-Kang (TSK)-type Fuzzy Neural Network (FNN)

training method is devised. To accelerate ANN training, a

parallel implementation of a Spiking Neuronal Network is

presented in [14] by means of the CUDA technology. It was

in [23] that the neural network model known as Locally

connected Neural Pyramid (LCNP) was first proposed. Using

Journal For Basic Sciences

Volume 22, Issue 12, 2022

ISSN NO : 1006-8341

PAGE NO: 197

hp
Textbox

NVIDIA CUDA, LCNP is tailored for high-throughput,

large-scale object identification.

III. ARCHITECTURE

The architecture for the proposed study is as follows:

1. Input the dataset required for the execution of
back propagation algorithm. The BP algorithm is
serially computed, meaning that computer code
is generated and executed in a serial fashion.

2. Output in the form of changing the weights
produces the desired outcome by altering the
neural network's weights. Additional strategies
include profiling the code using a flat profile and
a call graph, among others.

3. It is being done to optimize the code from o2 to
o4 levels and to parallelize the code using Open
MP. Benchmarking is carried out, which involves
evaluating serial and parallel code on various
system architectures.

4. It is done to assess how well the system performs
in terms of CPU usage, memory usage, and I/O
communication.

IV. IMPLEMENTATION

This Backpropagation method has been trained using data

from the fashion MNIST dataset. The data is sampled at
various sizes (24MB, 96MB, 250MB, 500MB, 750MB and
1GB). Different picture pixels represent the properties of the
dataset. Make use of the Backpropagation algorithm on this
data collection. A new estimate can be calculated by revising

the weights. Finally, we determine how long it takes to run
serial code, how much memory is required, and how long it
takes to send and receive data via I/O. In the wake of this
process, we profile the code and attempt to enhance it. After
that, we parallelize the code using Open MP and compare the
execution time, memory footprint, and I/O traffic to that of the
original serial code. In the end, we benchmark the serial and
parallel programmes on Intel 64-bit and Intel Xeon
processors.

V. RESULTS

Fig 1. A Simple Artificial Neural Network

Table II. Memory (in bytes) used differently by serial vs

parallel programs (Intel 64-bit processor)

Fig 3. Graph showing the relative CPU time (in

seconds) spent on a 1GB dataset while using serial

versus parallel code.

Fig 2. Basic architectural diagram

Table III. Memory (in bytes) used differently by serial vs

parallel programs (Intel Xe-on processor)

Journal For Basic Sciences

Volume 22, Issue 12, 2022

ISSN NO : 1006-8341

PAGE NO: 198

As we can see in the graphs and the tables presented above

parallelization of back propagation algorithm results in lower

CPU time. The Intel i5 CPU has significant lower memory

usage too.

VI. CONCLUSION

Several machine learning algorithms were analysed. The

most productive algorithm was the back propagation one.

This algorithm's serial code was applied to a variety of

datasets, and the results were various lengths and running

on a 64-bit Intel CPU. In this section, we discuss the

results of our performance analysis with regards to central

processing unit (CPU) time, memory consumption, and

I/O communication. Following that, code optimization

and profiling were performed. Then, for each dataset, we

run parallel code written in OpenMP and assess its

performance based on the aforementioned criteria.

We then run benchmarks on an Intel Xeon CPU to

compare the two programmes. The execution time,

memory usage, and I/O communications of a serial

programme are all larger than those of a parallel

programme. Moreover, these variables diminish as the

number of threads grows. Furthermore, unlike the Intel

64-bit CPU, the Intel Xeon enables for the seamless

execution of serial as well as parallel code.

References

[1] Jiang, P. Chen, C. and Liu, X. 2016. "Time series prediction for

evolutions of complex systems: A deep learning approach," 2016 IEEE
International Conference on Control and Robotics Engineering
(ICCRE), Singapore, pp. 1-6.

[2] V. Boyer and D. El Baz, Recent advances on GPU computing in
Operations Research, 27th IEEE International Parallel and Distributed
Processing Symposium Workshops & PhD Forum (IPDPSW 2013),
pp. 1778–1787, 2013.

[3] H. Jang and A. Park and K. Jung, Neural network implementation using
CUDA and OPENMP, Digital Image Computing: Techniques and
Applications (DICTA], pp. 155–161, 2008.

[4] M. M. Khan and D. Lester and L. Plana and A. Rast and X. Jin and E.
Painkras and S. Furber, SpiNNaker: mapping neural networks onto a
massively-parallel chip multiprocessor, Neural Networks, IEEE World
Congress on Computational Intelligence, pp. 2849– 2856, 2008.

[5] D. Kirk, and W. Wen-Mei, Programming massively parallel
processors: a hands-on approach, Newnes, 2012.

[6] T. Nowotny, Parallel implementation of a spiking neuronal network
model of unsupervised olfactory learning on NVIDIA CUDA The 2010
International Joint Conference on Neural Networks (IJCNN), pp. 1–8,
2010.

[7] Chen, X. and Long, S. 2009. "Adaptive Multi-versioning for OpenMP
Parallelization via Machine Learning," 2009 15th International
Conference on Parallel and Distributed Systems, Shenzhen, pp. 907-
912.

Fig 4. Memory (in bytes) use on a 1 GB dataset,

plotted as a comparison between serial and parallel

programs.

Journal For Basic Sciences

Volume 22, Issue 12, 2022

ISSN NO : 1006-8341

PAGE NO: 199

