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Abstract: As we know coding theory solves the problems of the detection and correction of the error by noise in any 

channel. In this paper, we explain how this can be done using group theory. Also we will discuss modulus and lastly 

we will form an ISBN code as well as additional information in its specification.    
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1. Introduction: 

Group theory emerged in the early 19th century, initially driven by the study of solutions to polynomial 

equations. Its roots can be traced back to Mathematicians like Langrage’s, Ruffini, and Galois, with 

Galois being credited with establishing a formal link between group theory and field theory. The Field 

theory has since expanded, finding applications in various areas of Mathematics, Physics, Chemistry, 

Computer Science and Electronics Engineering etc. Now, a group can be defined as follows. 

A group (�, . ) is a set � along with a binary operation  : � × � → � , such that 

(i) (�. �). � = �. (�. �) ∀ �, �, � ∈ � 

(ii) There exist an Identity element � ∈ � such that �. � = �. � = � ∀� ∈ � (this Identity element 

is unique )  

(iii) ∀� ∈ �, ∃ an element b ∈ G such that �� = �� = �. 

A group (�, . ) in which � . � = � . � for all �, � ∈ �  is called an abelian group. 

1.1. Theorem: The Identity element of a group is unique.  

Proof: is oblivious. 

1.2. Theorem: Let � be a group. Then the Inverse of an element of the group is unique.  

 Proof: is oblivious. 

1.3. Definition: Let �  be a group. A subset � of � is a subgroup of   � if � is a non empty and it is 

closed under product and inverse. That is,  , � ∈ � ⟹ ��� ∈ � and a� ∈ � .If � is a subgroup of   

�. We write � ≤ �. 

Note: If � ≤ �, the Identity of � belongs to � as well. 

1.4. Definition:  Let �  be a group and � ∈ �, the smallest positive integer � such that �� = 1  is called 

the order of �. 

1.5. Definition:  Let � be a subgroup of a group. For any � ∈ �, the set �� = {�ℎ|ℎ ∈ �} is called a left 

coset or just coset. An element of a coset is called a representative of the coset. 

1.6. Theorem: Let � be a subgroup of a group �. For any � ∈ �. The set of left cosets of � in � partition 

�. furthermore, for all �, � ∈ �, �� = �� ⟺ ���� ∈ �.  
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Proof: First of all, as   � ≤ �, 1 ∈ �.   Thus � ∈ �� for all � ∈ �,that is, � = ⋃ ���∈�  . To show the 

distinct left cosets have been empty intersection, let �� ∩ �� ≠ Ø for some �, � ∈ �. We must show 

that  �� = �� . Let � ∈ �� ∩ ��.  Then � = �� = ��  for some � , � ∈ �.  This gives � = �(����). 

For any � ∈ �, �� = �(�����) ∈ �� as  ����� ∈ �. Thus  ⊆ �� . Similarly we get       �� ⊆ �� . 

Therefore,   �� =  ��  if they have nonempty intersection and we get that set of left cosets partition �.  

By the first part of this theorem, we get     �� =  �� if and only if    � ∈ ��, which is equivalent to 

���� ∈ �.  

1.7. Definition: If � is a normal subgroup of group �, the set of cosets of � in � again form a group by 

defining (��)(��) = (��)�. This multiplication makes sense as � is normal. This group is called 

Quotient group and is denoted by 
�

�
. 

1.8. Theorem: (Langrage’s theorem). If �  is a subgroup of a finite group � . |�| divides |�| and the 

number of left cosets of � in �  is 
|�|

|�|
.  

Proof: Let |�| = �  and the number of left cosets of � be �. As the set of left cosets partitions �, by the 

map �: � → �� defined by ℎ → �ℎ  is a surjection from � to the left coset ��. Further , � is injective as 

�ℎ� = �ℎ� ⟹ ℎ� = ℎ�. . This proves |��| = |�| = �.  Since �  is partitioned into �  subsets each of 

cardinality �, |�| = ��.  Thus � =
|�|

�
=

|�|

|�|
.   

2. Modulus: In group theory the concept of “Modulus” refers to modular arithmetic, which involves 

working with reminders of the division. Let � denote the set of integer and for � ∈ �, define 
�

��
=

{0, 1, 2,3, … . , � − 1}. We often read   
�

��
 as the integer modulo �.  

2.1. Definition :(Congruence). � ≡ � mod � Means � − �   is an integer multiple of �. Equivalently, � 

and � have the same reminder when divided by �.  

2.2. Lemma: For a fixed    � ∈ �   and �, ��, �, �� integers , we have     

(1)  � ≡ � mod n ⟺  � ≡ � mod n . 

(2) � ≡ � mod n and  � ≡ � mod n ⟹ � ≡ � mod n.  

(3) � ≡ �� mod n and  � ≡ �� mod n than ��� ≡ ��� mod n  In particular 

 � ≡ �� mod n ⟹ �� ≡ ���� mod n. 

2.3. Definition: (Least Common Multiple). Let �, � ∈ � the least common multiple of  ���(�, �) = 1 

is the smallest positive integer divisible by both � and �.     

3. Coding theory:  

Imagine a situation in which information is being transmitted between two points. The information takes 

the form of high and low pulses (for example, radio waves or electric currents), which we will label 1 and 

0, respectively. As these pulses are sent and received, they are grouped together in blocks of fixed length. 

The length determines how much information can be contained in one block. If the length is �, there 

are 2�different values that a block can have. If the information being sent takes the form of text, each 
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block might be a character. In that case, the length of a block may be seven, so that  2� = 128 block 

values can represent letters (both upper and lower case), digits, punctuation, and so on. During the 

transmission of data, noise can alter the signal so that what is received differs from what is sent. 

Fig.1 illustrates the problem that can be encountered if information is transmitted between two points. 

 

 

Fig. 1. Noisy transmission 

Noise is a fact of life for anyone who tries to transmit information. Fortunately, in most situations, we 

could expect a high percentage of the pulses that are sent to be received properly. However, when large 

numbers of pulses are transmitted, there are usually some errors due to noise. For the remainder of the 

discussion, we will make assumptions about the nature of the noise and the message that we want to send. 

Henceforth, we will refer to the pulses as bits. 

We will assume that our information is being sent along a binary symmetric channel. By this, we mean 

that any single bit that is transmitted will be received improperly with a certain fixed probability 

�,independent of the bit value. The magnitude of � is usually quite small. To illustrate the process, we 

will assume that  � = 0.001 which, in the real world, would be considered somewhat large. Since 1 −

� = 0.999 we can expect 99.9% of all bits to be properly received. 

Suppose that our message consists of 3,000 bits of information, to be sent in blocks of three bits each. 

Two factors will be considered in evaluating a method of transmission. The first is the probability that the 

message is received with no errors. The second is the number of bits that will be transmitted in order to 

send the message. This quantity is called the rate of transmission: 

Rate =
Massge length

Number of bits transmitted
 

As you might expect, as we devise methods to improve the probability of success, the rate will decrease. 

Suppose that we ignore the noise and transmit the message without any coding. The probability of success 

is  (0.999)���� = 0.0497124 . Therefore we only successfully receive the message in a totally correct 

form less than 5% of the time. The rate of 
����

����
= 1 certainly doesn't offset this poor probability. 

Our strategy for improving our chances of success will be to send an encoded message across the binary 

symmetric channel. The encoding will be done in such a way that small errors can be identified and 

corrected. This idea is illustrated in Fig.  2. 

 

 

 

0001101 

is sent 
Noise 

0001001 
 is received 

Message Encoder Encoded 
Message 

Binary Symmetric 

Channel 
Received String 

Decoder Message if all goes right 
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Fig .2. Different stages for message transmission 

In our example, the functions that will correspond to our encoding and decoding devices will all be 

homeomorphisms between Cartesian products of ��. 

3.1. Error Detection: 

Suppose that each block of three bits � = (��, ��, ��)  encoded with the function �: ��
� → ��

�, where  

�(�) =(��, ��, ��, ��+���+���) 

When the encoded block is received, the four bits will probably all be correct (they are correct 

approximately 99.6% of the time), but the added bit that is sent will make it possible to detect single 

errors in the block. Note that when �(�) is transmitted, the sum of its components is 

��+���+���+�(��+���+���) = 0 since �� + �� = 0 in ��. 

If any single bit is garbled by noise, the sum of the received bits will be 1. The last bit of �(�) is called 

the parity bit. A parity error occurs if the sum of the received bits is 1. Since more than one error is 

unlikely when �  is small, a high percentage of all errors can be detected. 

At the receiving end, the decoding function acts on the four-bit block � =(��, ��, ��,��)with the function 

: ��
� → ��

� , Where  �(�) =(��, ��, ��, ��+� ��+� �� +�  ��) 

The fourth bit is called the parity-check bit. If no parity error occurs, the first three bits are recorded as 

part of the message. If a parity error occurs, we will assume that a retransmission of that block can be 

requested. This request can take the form of automatically having the parity-check bit of �(�)sent back to 

the source. If 1 is received, the previous block is retransmitted; if 0 is received, the next block is sent. This 

assumption of two-way communication is significant, but it is desirable to make this coding system 

useful. It is reasonable to expect that the probability of a transmission error in the opposite direction is 

also 0.001. Without going into the details, we will report that the probability of success is approximately 

0.990 and the rate is approximately 3/5. The rate includes the transmission of the parity-check bit to the 

source. 

3.2. Error Correction: 

Next, we will consider a coding process that can correct errors at the receiving end so that only one-way 

communication is needed. Before we begin, recall that every element of ��
�, � ≥ 1, is its own inverse; that 

is, −� = �. Therefore, � − � = � + �. 

Noisy three-bit message blocks are difficult to transmit because they are so similar to one another. 

If �  and �  are in ��
�  their difference, � +��  can be thought of as a measure of how close they are. 

If � and � differ in only one bit position, one error can change one into the other. The encoding that we 

will introduce takes a block  � = (��, ��, ��)  and produces a block of length 6 called the code 

word of �. The code words are selected so that they are farther from one another than the messages are. In 
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fact, each code word will differ from each other code word by at least three bits. As a result, any single 

error will not push a code word close enough to another code word to cause confusion. Now for the 

details. 

Let � = �
1 0 0
0 1 0
0 0 1

   1 1 0
    1 0 1
    0 1 1

�. We call � ia a generator matrix for the code, and let � = (��, ��, ��) be 

are our massage.  

 Define   �: ��
� → ��

� by �(�) = �� =(��, ��, ��, ��, ��, ��) 

Where  

�� = ��    +�             �� 

�� = ��    +�                                               �� 

�� = ��    +�                                                                      �� 

Notice that � is a homomorphism. Also, if � and � are distinct elements of ��
� then � = � + � has at least 

one coordinate equal to 1. Now consider the difference between � (�)and �(�).  

� (�) + �(�) = �(� + �) 

= �(�) 

=(��, ��, ��, ��, ��, ��) 

Whether � has 1, 2, or 3 ones, �(�)must have at least three ones. This can be seen by considering the three 

cases separately. For example, if � has a single one, two of the parity bits are also 1. 

Therefore, �(�)and �(�) differ in at least three bits. Now consider the problem of decoding the code 

words. Imagine that a code word, �(�) , is transmitted, and � =(��, ��, ��, ��, ��, ��)is received. At the 

receiving end, we know the formula for �(�) and if no error has occurred in transmission, 

�� = �� 

�� = �� 

�� = �� 

�� = ��    +�   �� 

�� = ��    +�    �� 

�� = ��    +�     �� 

⟹       ��    +�   ��     +�  �� = 0 
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��    +�   ��     +�  �� = 0 

��    +�   ��     +�  �� = 0 

The last three equations are called parity-check equations. If any of them are not true, an error has 

occurred. This error checking can be described in matrix form. 

Let  

� =  

⎝

⎜⎜
⎛

1 1 0
1 0 1
0 1 1
1 0 0
0 1 0
0 0 1⎠

⎟⎟
⎞

 

P is called parity check matrix for the code. Now define  �: ��
� → ��

� by �(�) = ��. We call  �(�) the 

syndrome of the received block. For example,   �(0,1,0,1,0,1) and �(1,1,1,1,0,0) = (1,0,0). 

Note :  � is also a homomorphism. If the syndrome of a block is (0,0,0), we can be almost certain that the 

massage block is  (��, ��, ��). 

Next we turn to the method of correcting errors. Despite the fact that there are only eight code words, one 

for each three-bit block value, the set of possible received blocks is ��
� , with  64  elements. Suppose 

that � is not a code word, but that it differs from a code word by exactly one bit. In other words, it is the 

result of a single error in transmission. Suppose that �  is the code word that �  is closest to and that they 

differ in the first bit. Then � + � = (1,0,0,0,0,0) and  

�(�) = �(�) + �(�) since �(�) = (0,0,0) 

= �(� + �) since � is a homomorphism 

= �(1,0,0,0,0,0) 

= (1,1,0) 

Note that we haven't specified b or � only that they differ in the first bit. Therefore, if � is received, there 

was probably an error in the first bit and �(�) = (1,1,0), the transmitted code word was probably � +

(1,0,0,0,0,0 ) and the message block was (��, +�1, ��, �� ). The same analysis can be done 

if � and � differ in any of the other five bits. 

This process can be described in terms of cosets. Let � be the set of code words; that is, � = 

�(��
�). Since �  is a homomorphism, � is a subgroup of  ��

�. Consider the factor group ��
�/�.: 

���
�/�� =

���
��

|�|
=

64

8
= 8 
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Suppose that and ��,��  are representatives of the same coset. Then �� = �� + ��� = �� + �  for some � 

in � Therefore, 

�(��) = �(��) + �(�) 

Since �(�) = (0,0,0) 

�(��) = �(�� + �) = �(��) 

and so  ��and ��  have the same syndrome.  

Theorem: There is a system of distinguished representative of ��
�/�  Such that each of the six –bit blocks 

having a single  1 is a distinguished representative of its own coset. 

Now we can describe the error-correcting process. First match each of the blocks with a single 1 with its 

syndrome. In addition, match the identity of � with the syndrome (0,0,0) as in the table below. Since 

there are eight cosets of � select any representative of the eighth coset to be distinguished. This is the 

coset with syndrome (1,1,1). 

��������
0 0 0
1 1 0
1 0 1
0 1 1
1 0 0
0 1 0
0 0 1
1 1 1

|
|
|
|
|
|
|
|
|

�����
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
1 0 0

����������
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 1

 

 

When block � is received, we need only compute the syndrome �(�), and add to bb the error correction 

that matches  �(�). 

4. Applied Coding Theory: 

When we hears the word “code” , pictures of computers , zeros and ones and ciphers are most likely the 

things that comes to the mind. The definition of code is “ a system of signals used to represents letters or 

numbers in transmitting messages” . Coding is simply defined as converting ordinary language into code. 

If these definition taken literally, the entire branch of mathematics could be placed under coding. In 

mathematics, we take ordinary language and convert it into symbols. Other aspects that come to the mind 

when speaking of coding are secret message and language that only trained personal can translate. Thus 

one often assumes that the field of coding theory deals with underground spies or secret military language 

such as Morse code. This is not true and coding theory is frequently confused with cryptography. 

Cryptography deals with encoding messages so that thery can only be read by the intended receiver. 
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Coding theory on the other hand focus on assuring that there is no error or redundancy in the delivered 

massage.     

Coding theory applies modular arithmetic profusely throughout its field of practice. One of the most 

famous problems using modulus in coding theory is the Intentional Standard Book Number (ISBN), 

found on the back of most books. This ten digit number, if accurate, has the property of  

10�� + 9�� + 8�� + 7�� + 6�� + 5�� + 4�� + 3�� + 2�� + ��� = 0 mod 11 

(where ��, ��, ��, ��, ��, ��, ��, ��, �� and ��� are the ten digits in order from left to right and ��� is the 

check digit). 

The check digit is picked specifically so that when it is added to (10�� + 9�� + 8�� + 7�� + 6�� +

5�� + 4�� + 3�� + 2��) , the toatal sum will equal 0 mod 11. In this case that the check digit is 10, an X  

will be written as the final number, for example 0 − 805 − 38703 − X  . Notice that the integers 1 

through 10 are utilized as coefficients since the ISBN is executed using 0 mod 11. 

The ISBN number, 0 − 440 − 23697 − 5, on a widely used calculus book can be checked for accuracy 

using this scheme, 

 10 ∗ 0 + 9 ∗ 4 + 8 ∗ 4 + 7 ∗ 0 + 6 ∗ 2 + 5 ∗ 3 + 4 ∗ 6 + 3 ∗ 9 + 2 ∗ 7 + 5 = 165 =0 mod 11.  

The ISBN check scheme is capable to detecting and correcting any single error. Thus if an error was 

made in the third digit giving  0 − 450 − 23697 − 5 instead of  0 − 440 − 23697 − 5 , symtem would 

be able to detect an error since   

10 ∗ 0 + 9 ∗ 4 + 8 ∗ 5 + 7 ∗ 0 + 6 ∗ 2 + 5 ∗ 3 + 4 ∗ 6 + 3 ∗ 9 + 2 ∗ 7 + 5 = 173 ≠0 mod 11.  

Because this sum does not equal to 0 mod 11, an error can be detected and the ISBN would be checked 

or re-entered. 

Now we will explain the error detection and correction scheme in ISBN through the following theorem: 

4.1. Theorem: The ISBN scheme is able to detect any single digit error.  

Proof: Let  �� be any one of the ten digits any the ISBN, when 1 ≤ � ≤ 10.  When inserting the ISBN into 

the algorithm, the co-efficient on  �� will be equal to 11 − � . Let � = 11 − �,  1 ≤ � ≤ 10. Now let ��
′  be 

an error made in the ith digit and let � = (�� − ��
′ ). In order for the error to go undetected both sums 

would have to be the congruent modulo 11. That is    

10�� + ⋯ + �(��) + ⋯ + ��� = 10�� + ⋯ + ����
′ � + ⋯ + ���mod11 

⟹ �(��)− ����
′ �≡ 0 mod 11 
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⟹���� − ��
′ � ≡ 0 mod 11 

⟹ �� = 0 mod11 

Thus �� must be divisible by 11. Because 11 is prime,  we know that 11 |n or 11|d. since we let � = 11 −

� where  1 ≤ � ≤ 10, then 11 would be not divide n. We also let � = (�� − ��
′ ), which implies  1 ≤ |�| ≤

10 (since ��� could be X = 10). Then 11 do not divide into d either. Therefore any single digit error will 

not go undetected.   

An extremely noteworthy mathematician, who will remain nameless, once said that after an error is 

detected in the ISBN scheme , “we can find where the error occurred by reducing the sun �  modulo 11, 

and then computing the additive inverse of � , −� , mod 11. The – � th term will be where the error took 

place. Thus in our previous ISBN on the calculus book, we would compute S=173 mod 11=8 and then 

obtain the additive inverse of 8 modulo 11 which equal 3 (8+3=0 mod 11). We would then conclude that 

an error took place in the third position. Now we can correct the error using basic algebra        

10 ∗ 0 + 9 ∗ 4 + 8 ∗ � + 7 ∗ 0 + 6 ∗ 2 + 5 ∗ 3 + 4 ∗ 6 + 3 ∗ 9 + 2 ∗ 7 + 5 = 165 =0 mod 11 

⟹8� + 133 ≡ 0 mod 11 

⟹8� + 1 ≡ 0 mod 11         since 133 ≡ 1 mod 11 

⟹8� ≡ 10 mod 11 since 1 has an additive inverse ��  10 mod 11 

⟹� = 4 Since 8*4=32≡10 mod 11. 

Thus the mathematician would conclude that the third should be 4 .  We can check this using  the 

algorithm  

10 ∗ 0 + 9 ∗ 4 + 8 ∗ 4 + 7 ∗ 0 + 6 ∗ 2 + 5 ∗ 3 + 4 ∗ 6 + 3 ∗ 9 + 2 ∗ 7 + 5 = 165 =0 mod 11. 

Using the hypothesis, we would incorrectly assume an error occurred in the six digit, since 6 is the 

additive inverse of 5 modulo 11. Consequently we could end up changing an accurate digit and in turn 

create a total error in the ISBN. The most accurate way to correct an error after one has been detected 

would be to check or retransmit the ISBN. 

The ISBN can also detect any by side transposition error. Assume the second and third digoits of the 

number 0 − 471 − 61884 − 5 were switched giving 0 − 741 − 61884 − 5. Using the ISBN system,  

  10 ∗ 0 + 9 ∗ 7 + 8 ∗ 4 + 7 ∗ 1 + 6 ∗ 6 + 5 ∗ 1 + 4 ∗ 8 + 3 ∗ 8 + 2 ∗ 4 + 5 = 212 ≠0 mod 11. 

 Would be obtained and an error would be detected. A general proof of this can be made as follows. 

4.2. Theorem: The ISBN scheme will detect any side by side transposition errors. 
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Proof Assume 1 ≤ � ≤ � ≤ 10 and � = � + 1. So �� �nd ��  will be (11 − �) and (11 − �) respectively. 

Assume an error occurs switching the order of �� and ��   so that  �� comes before ��. If the error were go 

to undetected, both sums in the algorithm would be congruent modulo 11. Then     

10�� + ⋯ + (11 − �)(��) + (11 − �)���� + ⋯ + ���  

≡ 10�� + ⋯ + (11 − �)���� + (11 − �)(��) … + ���mod11 

Thus the difference of the sums would be congruent to 0 mod 11., that is  

�(11 − �)(��) + (11 − �)����� − [(11 − �)���� + (11 − �)(��)] ≡ 0 mod 11. 

⟹ ��� − ���(� − �)≡ 0 mod 11 when simplified. 

Since we know that (� − �)= 1 by our assumption, we have  ��� − ��� ≡0 mod 11. Thus  ��� − ��� must 

be divisible by 11. Recall that 1 ≤ ��, �� ≤ 10 (since ��� could be x = 10). If we let � = (�� − ��) we 

know that 0 ≤ |�| < 11, which implies � < 11. We know that 11 cannot divide d and thus deduce that 

transposition error would not go undetected. 

What if two errors were made in the number 0 − 471 − 40827 − 1, one in each of the first and seven 

positions, give   

10 ∗ 0 + 9 ∗ 4 + 8 ∗ 7 + 7 ∗ 1 + 6 ∗ 4 + 5 ∗ 0 + 4 ∗ 4 + 3 ∗ 2 + 2 ∗ 7 + 1 = 210 =0 mod 11.  

This system does not catch all two digit errors. The ISBN system is useful in error detection, but not 

flawless.  
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